000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the parser 000013 ** to handle INSERT statements in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* 000018 ** Generate code that will 000019 ** 000020 ** (1) acquire a lock for table pTab then 000021 ** (2) open pTab as cursor iCur. 000022 ** 000023 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 000024 ** for that table that is actually opened. 000025 */ 000026 void sqlite3OpenTable( 000027 Parse *pParse, /* Generate code into this VDBE */ 000028 int iCur, /* The cursor number of the table */ 000029 int iDb, /* The database index in sqlite3.aDb[] */ 000030 Table *pTab, /* The table to be opened */ 000031 int opcode /* OP_OpenRead or OP_OpenWrite */ 000032 ){ 000033 Vdbe *v; 000034 assert( !IsVirtual(pTab) ); 000035 assert( pParse->pVdbe!=0 ); 000036 v = pParse->pVdbe; 000037 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 000038 if( !pParse->db->noSharedCache ){ 000039 sqlite3TableLock(pParse, iDb, pTab->tnum, 000040 (opcode==OP_OpenWrite)?1:0, pTab->zName); 000041 } 000042 if( HasRowid(pTab) ){ 000043 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 000044 VdbeComment((v, "%s", pTab->zName)); 000045 }else{ 000046 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000047 assert( pPk!=0 ); 000048 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 000049 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 000050 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 000051 VdbeComment((v, "%s", pTab->zName)); 000052 } 000053 } 000054 000055 /* 000056 ** Return a pointer to the column affinity string associated with index 000057 ** pIdx. A column affinity string has one character for each column in 000058 ** the table, according to the affinity of the column: 000059 ** 000060 ** Character Column affinity 000061 ** ------------------------------ 000062 ** 'A' BLOB 000063 ** 'B' TEXT 000064 ** 'C' NUMERIC 000065 ** 'D' INTEGER 000066 ** 'F' REAL 000067 ** 000068 ** An extra 'D' is appended to the end of the string to cover the 000069 ** rowid that appears as the last column in every index. 000070 ** 000071 ** Memory for the buffer containing the column index affinity string 000072 ** is managed along with the rest of the Index structure. It will be 000073 ** released when sqlite3DeleteIndex() is called. 000074 */ 000075 static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ 000076 /* The first time a column affinity string for a particular index is 000077 ** required, it is allocated and populated here. It is then stored as 000078 ** a member of the Index structure for subsequent use. 000079 ** 000080 ** The column affinity string will eventually be deleted by 000081 ** sqliteDeleteIndex() when the Index structure itself is cleaned 000082 ** up. 000083 */ 000084 int n; 000085 Table *pTab = pIdx->pTable; 000086 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 000087 if( !pIdx->zColAff ){ 000088 sqlite3OomFault(db); 000089 return 0; 000090 } 000091 for(n=0; n<pIdx->nColumn; n++){ 000092 i16 x = pIdx->aiColumn[n]; 000093 char aff; 000094 if( x>=0 ){ 000095 aff = pTab->aCol[x].affinity; 000096 }else if( x==XN_ROWID ){ 000097 aff = SQLITE_AFF_INTEGER; 000098 }else{ 000099 assert( x==XN_EXPR ); 000100 assert( pIdx->bHasExpr ); 000101 assert( pIdx->aColExpr!=0 ); 000102 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 000103 } 000104 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 000105 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 000106 pIdx->zColAff[n] = aff; 000107 } 000108 pIdx->zColAff[n] = 0; 000109 return pIdx->zColAff; 000110 } 000111 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 000112 if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); 000113 return pIdx->zColAff; 000114 } 000115 000116 000117 /* 000118 ** Compute an affinity string for a table. Space is obtained 000119 ** from sqlite3DbMalloc(). The caller is responsible for freeing 000120 ** the space when done. 000121 */ 000122 char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ 000123 char *zColAff; 000124 zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); 000125 if( zColAff ){ 000126 int i, j; 000127 for(i=j=0; i<pTab->nCol; i++){ 000128 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 000129 zColAff[j++] = pTab->aCol[i].affinity; 000130 } 000131 } 000132 do{ 000133 zColAff[j--] = 0; 000134 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 000135 } 000136 return zColAff; 000137 } 000138 000139 /* 000140 ** Make changes to the evolving bytecode to do affinity transformations 000141 ** of values that are about to be gathered into a row for table pTab. 000142 ** 000143 ** For ordinary (legacy, non-strict) tables: 000144 ** ----------------------------------------- 000145 ** 000146 ** Compute the affinity string for table pTab, if it has not already been 000147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 000148 ** 000149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 000150 ** which were then optimized out) then this routine becomes a no-op. 000151 ** 000152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 000153 ** affinities for register iReg and following. Or if iReg==0, 000154 ** then just set the P4 operand of the previous opcode (which should be 000155 ** an OP_MakeRecord) to the affinity string. 000156 ** 000157 ** A column affinity string has one character per column: 000158 ** 000159 ** Character Column affinity 000160 ** --------- --------------- 000161 ** 'A' BLOB 000162 ** 'B' TEXT 000163 ** 'C' NUMERIC 000164 ** 'D' INTEGER 000165 ** 'E' REAL 000166 ** 000167 ** For STRICT tables: 000168 ** ------------------ 000169 ** 000170 ** Generate an appropriate OP_TypeCheck opcode that will verify the 000171 ** datatypes against the column definitions in pTab. If iReg==0, that 000172 ** means an OP_MakeRecord opcode has already been generated and should be 000173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 000174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 000175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 000176 ** the first of a series of registers that will form the new record. 000177 ** Apply the type checking to that array of registers. 000178 */ 000179 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 000180 int i; 000181 char *zColAff; 000182 if( pTab->tabFlags & TF_Strict ){ 000183 if( iReg==0 ){ 000184 /* Move the previous opcode (which should be OP_MakeRecord) forward 000185 ** by one slot and insert a new OP_TypeCheck where the current 000186 ** OP_MakeRecord is found */ 000187 VdbeOp *pPrev; 000188 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000189 pPrev = sqlite3VdbeGetLastOp(v); 000190 assert( pPrev!=0 ); 000191 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 000192 pPrev->opcode = OP_TypeCheck; 000193 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 000194 }else{ 000195 /* Insert an isolated OP_Typecheck */ 000196 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 000197 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000198 } 000199 return; 000200 } 000201 zColAff = pTab->zColAff; 000202 if( zColAff==0 ){ 000203 zColAff = sqlite3TableAffinityStr(0, pTab); 000204 if( !zColAff ){ 000205 sqlite3OomFault(sqlite3VdbeDb(v)); 000206 return; 000207 } 000208 pTab->zColAff = zColAff; 000209 } 000210 assert( zColAff!=0 ); 000211 i = sqlite3Strlen30NN(zColAff); 000212 if( i ){ 000213 if( iReg ){ 000214 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 000215 }else{ 000216 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 000217 || sqlite3VdbeDb(v)->mallocFailed ); 000218 sqlite3VdbeChangeP4(v, -1, zColAff, i); 000219 } 000220 } 000221 } 000222 000223 /* 000224 ** Return non-zero if the table pTab in database iDb or any of its indices 000225 ** have been opened at any point in the VDBE program. This is used to see if 000226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 000227 ** run without using a temporary table for the results of the SELECT. 000228 */ 000229 static int readsTable(Parse *p, int iDb, Table *pTab){ 000230 Vdbe *v = sqlite3GetVdbe(p); 000231 int i; 000232 int iEnd = sqlite3VdbeCurrentAddr(v); 000233 #ifndef SQLITE_OMIT_VIRTUALTABLE 000234 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 000235 #endif 000236 000237 for(i=1; i<iEnd; i++){ 000238 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 000239 assert( pOp!=0 ); 000240 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 000241 Index *pIndex; 000242 Pgno tnum = pOp->p2; 000243 if( tnum==pTab->tnum ){ 000244 return 1; 000245 } 000246 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 000247 if( tnum==pIndex->tnum ){ 000248 return 1; 000249 } 000250 } 000251 } 000252 #ifndef SQLITE_OMIT_VIRTUALTABLE 000253 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 000254 assert( pOp->p4.pVtab!=0 ); 000255 assert( pOp->p4type==P4_VTAB ); 000256 return 1; 000257 } 000258 #endif 000259 } 000260 return 0; 000261 } 000262 000263 /* This walker callback will compute the union of colFlags flags for all 000264 ** referenced columns in a CHECK constraint or generated column expression. 000265 */ 000266 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 000267 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 000268 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 000269 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 000270 } 000271 return WRC_Continue; 000272 } 000273 000274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 000275 /* 000276 ** All regular columns for table pTab have been puts into registers 000277 ** starting with iRegStore. The registers that correspond to STORED 000278 ** or VIRTUAL columns have not yet been initialized. This routine goes 000279 ** back and computes the values for those columns based on the previously 000280 ** computed normal columns. 000281 */ 000282 void sqlite3ComputeGeneratedColumns( 000283 Parse *pParse, /* Parsing context */ 000284 int iRegStore, /* Register holding the first column */ 000285 Table *pTab /* The table */ 000286 ){ 000287 int i; 000288 Walker w; 000289 Column *pRedo; 000290 int eProgress; 000291 VdbeOp *pOp; 000292 000293 assert( pTab->tabFlags & TF_HasGenerated ); 000294 testcase( pTab->tabFlags & TF_HasVirtual ); 000295 testcase( pTab->tabFlags & TF_HasStored ); 000296 000297 /* Before computing generated columns, first go through and make sure 000298 ** that appropriate affinity has been applied to the regular columns 000299 */ 000300 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 000301 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 000302 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 000303 if( pOp->opcode==OP_Affinity ){ 000304 /* Change the OP_Affinity argument to '@' (NONE) for all stored 000305 ** columns. '@' is the no-op affinity and those columns have not 000306 ** yet been computed. */ 000307 int ii, jj; 000308 char *zP4 = pOp->p4.z; 000309 assert( zP4!=0 ); 000310 assert( pOp->p4type==P4_DYNAMIC ); 000311 for(ii=jj=0; zP4[jj]; ii++){ 000312 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 000313 continue; 000314 } 000315 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 000316 zP4[jj] = SQLITE_AFF_NONE; 000317 } 000318 jj++; 000319 } 000320 }else if( pOp->opcode==OP_TypeCheck ){ 000321 /* If an OP_TypeCheck was generated because the table is STRICT, 000322 ** then set the P3 operand to indicate that generated columns should 000323 ** not be checked */ 000324 pOp->p3 = 1; 000325 } 000326 } 000327 000328 /* Because there can be multiple generated columns that refer to one another, 000329 ** this is a two-pass algorithm. On the first pass, mark all generated 000330 ** columns as "not available". 000331 */ 000332 for(i=0; i<pTab->nCol; i++){ 000333 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 000334 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 000335 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 000336 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 000337 } 000338 } 000339 000340 w.u.pTab = pTab; 000341 w.xExprCallback = exprColumnFlagUnion; 000342 w.xSelectCallback = 0; 000343 w.xSelectCallback2 = 0; 000344 000345 /* On the second pass, compute the value of each NOT-AVAILABLE column. 000346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 000347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 000348 ** they are needed. 000349 */ 000350 pParse->iSelfTab = -iRegStore; 000351 do{ 000352 eProgress = 0; 000353 pRedo = 0; 000354 for(i=0; i<pTab->nCol; i++){ 000355 Column *pCol = pTab->aCol + i; 000356 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 000357 int x; 000358 pCol->colFlags |= COLFLAG_BUSY; 000359 w.eCode = 0; 000360 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 000361 pCol->colFlags &= ~COLFLAG_BUSY; 000362 if( w.eCode & COLFLAG_NOTAVAIL ){ 000363 pRedo = pCol; 000364 continue; 000365 } 000366 eProgress = 1; 000367 assert( pCol->colFlags & COLFLAG_GENERATED ); 000368 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 000369 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 000370 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 000371 } 000372 } 000373 }while( pRedo && eProgress ); 000374 if( pRedo ){ 000375 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 000376 } 000377 pParse->iSelfTab = 0; 000378 } 000379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 000380 000381 000382 #ifndef SQLITE_OMIT_AUTOINCREMENT 000383 /* 000384 ** Locate or create an AutoincInfo structure associated with table pTab 000385 ** which is in database iDb. Return the register number for the register 000386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 000387 ** table. (Also return zero when doing a VACUUM since we do not want to 000388 ** update the AUTOINCREMENT counters during a VACUUM.) 000389 ** 000390 ** There is at most one AutoincInfo structure per table even if the 000391 ** same table is autoincremented multiple times due to inserts within 000392 ** triggers. A new AutoincInfo structure is created if this is the 000393 ** first use of table pTab. On 2nd and subsequent uses, the original 000394 ** AutoincInfo structure is used. 000395 ** 000396 ** Four consecutive registers are allocated: 000397 ** 000398 ** (1) The name of the pTab table. 000399 ** (2) The maximum ROWID of pTab. 000400 ** (3) The rowid in sqlite_sequence of pTab 000401 ** (4) The original value of the max ROWID in pTab, or NULL if none 000402 ** 000403 ** The 2nd register is the one that is returned. That is all the 000404 ** insert routine needs to know about. 000405 */ 000406 static int autoIncBegin( 000407 Parse *pParse, /* Parsing context */ 000408 int iDb, /* Index of the database holding pTab */ 000409 Table *pTab /* The table we are writing to */ 000410 ){ 000411 int memId = 0; /* Register holding maximum rowid */ 000412 assert( pParse->db->aDb[iDb].pSchema!=0 ); 000413 if( (pTab->tabFlags & TF_Autoincrement)!=0 000414 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 000415 ){ 000416 Parse *pToplevel = sqlite3ParseToplevel(pParse); 000417 AutoincInfo *pInfo; 000418 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 000419 000420 /* Verify that the sqlite_sequence table exists and is an ordinary 000421 ** rowid table with exactly two columns. 000422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 000423 if( pSeqTab==0 000424 || !HasRowid(pSeqTab) 000425 || NEVER(IsVirtual(pSeqTab)) 000426 || pSeqTab->nCol!=2 000427 ){ 000428 pParse->nErr++; 000429 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 000430 return 0; 000431 } 000432 000433 pInfo = pToplevel->pAinc; 000434 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 000435 if( pInfo==0 ){ 000436 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 000437 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 000438 testcase( pParse->earlyCleanup ); 000439 if( pParse->db->mallocFailed ) return 0; 000440 pInfo->pNext = pToplevel->pAinc; 000441 pToplevel->pAinc = pInfo; 000442 pInfo->pTab = pTab; 000443 pInfo->iDb = iDb; 000444 pToplevel->nMem++; /* Register to hold name of table */ 000445 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 000446 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 000447 } 000448 memId = pInfo->regCtr; 000449 } 000450 return memId; 000451 } 000452 000453 /* 000454 ** This routine generates code that will initialize all of the 000455 ** register used by the autoincrement tracker. 000456 */ 000457 void sqlite3AutoincrementBegin(Parse *pParse){ 000458 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 000459 sqlite3 *db = pParse->db; /* The database connection */ 000460 Db *pDb; /* Database only autoinc table */ 000461 int memId; /* Register holding max rowid */ 000462 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 000463 000464 /* This routine is never called during trigger-generation. It is 000465 ** only called from the top-level */ 000466 assert( pParse->pTriggerTab==0 ); 000467 assert( sqlite3IsToplevel(pParse) ); 000468 000469 assert( v ); /* We failed long ago if this is not so */ 000470 for(p = pParse->pAinc; p; p = p->pNext){ 000471 static const int iLn = VDBE_OFFSET_LINENO(2); 000472 static const VdbeOpList autoInc[] = { 000473 /* 0 */ {OP_Null, 0, 0, 0}, 000474 /* 1 */ {OP_Rewind, 0, 10, 0}, 000475 /* 2 */ {OP_Column, 0, 0, 0}, 000476 /* 3 */ {OP_Ne, 0, 9, 0}, 000477 /* 4 */ {OP_Rowid, 0, 0, 0}, 000478 /* 5 */ {OP_Column, 0, 1, 0}, 000479 /* 6 */ {OP_AddImm, 0, 0, 0}, 000480 /* 7 */ {OP_Copy, 0, 0, 0}, 000481 /* 8 */ {OP_Goto, 0, 11, 0}, 000482 /* 9 */ {OP_Next, 0, 2, 0}, 000483 /* 10 */ {OP_Integer, 0, 0, 0}, 000484 /* 11 */ {OP_Close, 0, 0, 0} 000485 }; 000486 VdbeOp *aOp; 000487 pDb = &db->aDb[p->iDb]; 000488 memId = p->regCtr; 000489 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000490 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 000491 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 000492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 000493 if( aOp==0 ) break; 000494 aOp[0].p2 = memId; 000495 aOp[0].p3 = memId+2; 000496 aOp[2].p3 = memId; 000497 aOp[3].p1 = memId-1; 000498 aOp[3].p3 = memId; 000499 aOp[3].p5 = SQLITE_JUMPIFNULL; 000500 aOp[4].p2 = memId+1; 000501 aOp[5].p3 = memId; 000502 aOp[6].p1 = memId; 000503 aOp[7].p2 = memId+2; 000504 aOp[7].p1 = memId; 000505 aOp[10].p2 = memId; 000506 if( pParse->nTab==0 ) pParse->nTab = 1; 000507 } 000508 } 000509 000510 /* 000511 ** Update the maximum rowid for an autoincrement calculation. 000512 ** 000513 ** This routine should be called when the regRowid register holds a 000514 ** new rowid that is about to be inserted. If that new rowid is 000515 ** larger than the maximum rowid in the memId memory cell, then the 000516 ** memory cell is updated. 000517 */ 000518 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 000519 if( memId>0 ){ 000520 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 000521 } 000522 } 000523 000524 /* 000525 ** This routine generates the code needed to write autoincrement 000526 ** maximum rowid values back into the sqlite_sequence register. 000527 ** Every statement that might do an INSERT into an autoincrement 000528 ** table (either directly or through triggers) needs to call this 000529 ** routine just before the "exit" code. 000530 */ 000531 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 000532 AutoincInfo *p; 000533 Vdbe *v = pParse->pVdbe; 000534 sqlite3 *db = pParse->db; 000535 000536 assert( v ); 000537 for(p = pParse->pAinc; p; p = p->pNext){ 000538 static const int iLn = VDBE_OFFSET_LINENO(2); 000539 static const VdbeOpList autoIncEnd[] = { 000540 /* 0 */ {OP_NotNull, 0, 2, 0}, 000541 /* 1 */ {OP_NewRowid, 0, 0, 0}, 000542 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 000543 /* 3 */ {OP_Insert, 0, 0, 0}, 000544 /* 4 */ {OP_Close, 0, 0, 0} 000545 }; 000546 VdbeOp *aOp; 000547 Db *pDb = &db->aDb[p->iDb]; 000548 int iRec; 000549 int memId = p->regCtr; 000550 000551 iRec = sqlite3GetTempReg(pParse); 000552 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000553 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 000554 VdbeCoverage(v); 000555 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 000556 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 000557 if( aOp==0 ) break; 000558 aOp[0].p1 = memId+1; 000559 aOp[1].p2 = memId+1; 000560 aOp[2].p1 = memId-1; 000561 aOp[2].p3 = iRec; 000562 aOp[3].p2 = iRec; 000563 aOp[3].p3 = memId+1; 000564 aOp[3].p5 = OPFLAG_APPEND; 000565 sqlite3ReleaseTempReg(pParse, iRec); 000566 } 000567 } 000568 void sqlite3AutoincrementEnd(Parse *pParse){ 000569 if( pParse->pAinc ) autoIncrementEnd(pParse); 000570 } 000571 #else 000572 /* 000573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 000574 ** above are all no-ops 000575 */ 000576 # define autoIncBegin(A,B,C) (0) 000577 # define autoIncStep(A,B,C) 000578 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 000579 000580 /* 000581 ** If argument pVal is a Select object returned by an sqlite3MultiValues() 000582 ** that was able to use the co-routine optimization, finish coding the 000583 ** co-routine. 000584 */ 000585 void sqlite3MultiValuesEnd(Parse *pParse, Select *pVal){ 000586 if( ALWAYS(pVal) && pVal->pSrc->nSrc>0 ){ 000587 SrcItem *pItem = &pVal->pSrc->a[0]; 000588 assert( (pItem->fg.isSubquery && pItem->u4.pSubq!=0) || pParse->nErr ); 000589 if( pItem->fg.isSubquery ){ 000590 sqlite3VdbeEndCoroutine(pParse->pVdbe, pItem->u4.pSubq->regReturn); 000591 sqlite3VdbeJumpHere(pParse->pVdbe, pItem->u4.pSubq->addrFillSub - 1); 000592 } 000593 } 000594 } 000595 000596 /* 000597 ** Return true if all expressions in the expression-list passed as the 000598 ** only argument are constant. 000599 */ 000600 static int exprListIsConstant(Parse *pParse, ExprList *pRow){ 000601 int ii; 000602 for(ii=0; ii<pRow->nExpr; ii++){ 000603 if( 0==sqlite3ExprIsConstant(pParse, pRow->a[ii].pExpr) ) return 0; 000604 } 000605 return 1; 000606 } 000607 000608 /* 000609 ** Return true if all expressions in the expression-list passed as the 000610 ** only argument are both constant and have no affinity. 000611 */ 000612 static int exprListIsNoAffinity(Parse *pParse, ExprList *pRow){ 000613 int ii; 000614 if( exprListIsConstant(pParse,pRow)==0 ) return 0; 000615 for(ii=0; ii<pRow->nExpr; ii++){ 000616 Expr *pExpr = pRow->a[ii].pExpr; 000617 assert( pExpr->op!=TK_RAISE ); 000618 assert( pExpr->affExpr==0 ); 000619 if( 0!=sqlite3ExprAffinity(pExpr) ) return 0; 000620 } 000621 return 1; 000622 000623 } 000624 000625 /* 000626 ** This function is called by the parser for the second and subsequent 000627 ** rows of a multi-row VALUES clause. Argument pLeft is the part of 000628 ** the VALUES clause already parsed, argument pRow is the vector of values 000629 ** for the new row. The Select object returned represents the complete 000630 ** VALUES clause, including the new row. 000631 ** 000632 ** There are two ways in which this may be achieved - by incremental 000633 ** coding of a co-routine (the "co-routine" method) or by returning a 000634 ** Select object equivalent to the following (the "UNION ALL" method): 000635 ** 000636 ** "pLeft UNION ALL SELECT pRow" 000637 ** 000638 ** If the VALUES clause contains a lot of rows, this compound Select 000639 ** object may consume a lot of memory. 000640 ** 000641 ** When the co-routine method is used, each row that will be returned 000642 ** by the VALUES clause is coded into part of a co-routine as it is 000643 ** passed to this function. The returned Select object is equivalent to: 000644 ** 000645 ** SELECT * FROM ( 000646 ** Select object to read co-routine 000647 ** ) 000648 ** 000649 ** The co-routine method is used in most cases. Exceptions are: 000650 ** 000651 ** a) If the current statement has a WITH clause. This is to avoid 000652 ** statements like: 000653 ** 000654 ** WITH cte AS ( VALUES('x'), ('y') ... ) 000655 ** SELECT * FROM cte AS a, cte AS b; 000656 ** 000657 ** This will not work, as the co-routine uses a hard-coded register 000658 ** for its OP_Yield instructions, and so it is not possible for two 000659 ** cursors to iterate through it concurrently. 000660 ** 000661 ** b) The schema is currently being parsed (i.e. the VALUES clause is part 000662 ** of a schema item like a VIEW or TRIGGER). In this case there is no VM 000663 ** being generated when parsing is taking place, and so generating 000664 ** a co-routine is not possible. 000665 ** 000666 ** c) There are non-constant expressions in the VALUES clause (e.g. 000667 ** the VALUES clause is part of a correlated sub-query). 000668 ** 000669 ** d) One or more of the values in the first row of the VALUES clause 000670 ** has an affinity (i.e. is a CAST expression). This causes problems 000671 ** because the complex rules SQLite uses (see function 000672 ** sqlite3SubqueryColumnTypes() in select.c) to determine the effective 000673 ** affinity of such a column for all rows require access to all values in 000674 ** the column simultaneously. 000675 */ 000676 Select *sqlite3MultiValues(Parse *pParse, Select *pLeft, ExprList *pRow){ 000677 000678 if( pParse->bHasWith /* condition (a) above */ 000679 || pParse->db->init.busy /* condition (b) above */ 000680 || exprListIsConstant(pParse,pRow)==0 /* condition (c) above */ 000681 || (pLeft->pSrc->nSrc==0 && 000682 exprListIsNoAffinity(pParse,pLeft->pEList)==0) /* condition (d) above */ 000683 || IN_SPECIAL_PARSE 000684 ){ 000685 /* The co-routine method cannot be used. Fall back to UNION ALL. */ 000686 Select *pSelect = 0; 000687 int f = SF_Values | SF_MultiValue; 000688 if( pLeft->pSrc->nSrc ){ 000689 sqlite3MultiValuesEnd(pParse, pLeft); 000690 f = SF_Values; 000691 }else if( pLeft->pPrior ){ 000692 /* In this case set the SF_MultiValue flag only if it was set on pLeft */ 000693 f = (f & pLeft->selFlags); 000694 } 000695 pSelect = sqlite3SelectNew(pParse, pRow, 0, 0, 0, 0, 0, f, 0); 000696 pLeft->selFlags &= ~SF_MultiValue; 000697 if( pSelect ){ 000698 pSelect->op = TK_ALL; 000699 pSelect->pPrior = pLeft; 000700 pLeft = pSelect; 000701 } 000702 }else{ 000703 SrcItem *p = 0; /* SrcItem that reads from co-routine */ 000704 000705 if( pLeft->pSrc->nSrc==0 ){ 000706 /* Co-routine has not yet been started and the special Select object 000707 ** that accesses the co-routine has not yet been created. This block 000708 ** does both those things. */ 000709 Vdbe *v = sqlite3GetVdbe(pParse); 000710 Select *pRet = sqlite3SelectNew(pParse, 0, 0, 0, 0, 0, 0, 0, 0); 000711 000712 /* Ensure the database schema has been read. This is to ensure we have 000713 ** the correct text encoding. */ 000714 if( (pParse->db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ){ 000715 sqlite3ReadSchema(pParse); 000716 } 000717 000718 if( pRet ){ 000719 SelectDest dest; 000720 Subquery *pSubq; 000721 pRet->pSrc->nSrc = 1; 000722 pRet->pPrior = pLeft->pPrior; 000723 pRet->op = pLeft->op; 000724 if( pRet->pPrior ) pRet->selFlags |= SF_Values; 000725 pLeft->pPrior = 0; 000726 pLeft->op = TK_SELECT; 000727 assert( pLeft->pNext==0 ); 000728 assert( pRet->pNext==0 ); 000729 p = &pRet->pSrc->a[0]; 000730 p->fg.viaCoroutine = 1; 000731 p->iCursor = -1; 000732 assert( !p->fg.isIndexedBy && !p->fg.isTabFunc ); 000733 p->u1.nRow = 2; 000734 if( sqlite3SrcItemAttachSubquery(pParse, p, pLeft, 0) ){ 000735 pSubq = p->u4.pSubq; 000736 pSubq->addrFillSub = sqlite3VdbeCurrentAddr(v) + 1; 000737 pSubq->regReturn = ++pParse->nMem; 000738 sqlite3VdbeAddOp3(v, OP_InitCoroutine, 000739 pSubq->regReturn, 0, pSubq->addrFillSub); 000740 sqlite3SelectDestInit(&dest, SRT_Coroutine, pSubq->regReturn); 000741 000742 /* Allocate registers for the output of the co-routine. Do so so 000743 ** that there are two unused registers immediately before those 000744 ** used by the co-routine. This allows the code in sqlite3Insert() 000745 ** to use these registers directly, instead of copying the output 000746 ** of the co-routine to a separate array for processing. */ 000747 dest.iSdst = pParse->nMem + 3; 000748 dest.nSdst = pLeft->pEList->nExpr; 000749 pParse->nMem += 2 + dest.nSdst; 000750 000751 pLeft->selFlags |= SF_MultiValue; 000752 sqlite3Select(pParse, pLeft, &dest); 000753 pSubq->regResult = dest.iSdst; 000754 assert( pParse->nErr || dest.iSdst>0 ); 000755 } 000756 pLeft = pRet; 000757 } 000758 }else{ 000759 p = &pLeft->pSrc->a[0]; 000760 assert( !p->fg.isTabFunc && !p->fg.isIndexedBy ); 000761 p->u1.nRow++; 000762 } 000763 000764 if( pParse->nErr==0 ){ 000765 Subquery *pSubq; 000766 assert( p!=0 ); 000767 assert( p->fg.isSubquery ); 000768 pSubq = p->u4.pSubq; 000769 assert( pSubq!=0 ); 000770 assert( pSubq->pSelect!=0 ); 000771 assert( pSubq->pSelect->pEList!=0 ); 000772 if( pSubq->pSelect->pEList->nExpr!=pRow->nExpr ){ 000773 sqlite3SelectWrongNumTermsError(pParse, pSubq->pSelect); 000774 }else{ 000775 sqlite3ExprCodeExprList(pParse, pRow, pSubq->regResult, 0, 0); 000776 sqlite3VdbeAddOp1(pParse->pVdbe, OP_Yield, pSubq->regReturn); 000777 } 000778 } 000779 sqlite3ExprListDelete(pParse->db, pRow); 000780 } 000781 000782 return pLeft; 000783 } 000784 000785 /* Forward declaration */ 000786 static int xferOptimization( 000787 Parse *pParse, /* Parser context */ 000788 Table *pDest, /* The table we are inserting into */ 000789 Select *pSelect, /* A SELECT statement to use as the data source */ 000790 int onError, /* How to handle constraint errors */ 000791 int iDbDest /* The database of pDest */ 000792 ); 000793 000794 /* 000795 ** This routine is called to handle SQL of the following forms: 000796 ** 000797 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 000798 ** insert into TABLE (IDLIST) select 000799 ** insert into TABLE (IDLIST) default values 000800 ** 000801 ** The IDLIST following the table name is always optional. If omitted, 000802 ** then a list of all (non-hidden) columns for the table is substituted. 000803 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 000804 ** is omitted. 000805 ** 000806 ** For the pSelect parameter holds the values to be inserted for the 000807 ** first two forms shown above. A VALUES clause is really just short-hand 000808 ** for a SELECT statement that omits the FROM clause and everything else 000809 ** that follows. If the pSelect parameter is NULL, that means that the 000810 ** DEFAULT VALUES form of the INSERT statement is intended. 000811 ** 000812 ** The code generated follows one of four templates. For a simple 000813 ** insert with data coming from a single-row VALUES clause, the code executes 000814 ** once straight down through. Pseudo-code follows (we call this 000815 ** the "1st template"): 000816 ** 000817 ** open write cursor to <table> and its indices 000818 ** put VALUES clause expressions into registers 000819 ** write the resulting record into <table> 000820 ** cleanup 000821 ** 000822 ** The three remaining templates assume the statement is of the form 000823 ** 000824 ** INSERT INTO <table> SELECT ... 000825 ** 000826 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 000827 ** in other words if the SELECT pulls all columns from a single table 000828 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 000829 ** if <table2> and <table1> are distinct tables but have identical 000830 ** schemas, including all the same indices, then a special optimization 000831 ** is invoked that copies raw records from <table2> over to <table1>. 000832 ** See the xferOptimization() function for the implementation of this 000833 ** template. This is the 2nd template. 000834 ** 000835 ** open a write cursor to <table> 000836 ** open read cursor on <table2> 000837 ** transfer all records in <table2> over to <table> 000838 ** close cursors 000839 ** foreach index on <table> 000840 ** open a write cursor on the <table> index 000841 ** open a read cursor on the corresponding <table2> index 000842 ** transfer all records from the read to the write cursors 000843 ** close cursors 000844 ** end foreach 000845 ** 000846 ** The 3rd template is for when the second template does not apply 000847 ** and the SELECT clause does not read from <table> at any time. 000848 ** The generated code follows this template: 000849 ** 000850 ** X <- A 000851 ** goto B 000852 ** A: setup for the SELECT 000853 ** loop over the rows in the SELECT 000854 ** load values into registers R..R+n 000855 ** yield X 000856 ** end loop 000857 ** cleanup after the SELECT 000858 ** end-coroutine X 000859 ** B: open write cursor to <table> and its indices 000860 ** C: yield X, at EOF goto D 000861 ** insert the select result into <table> from R..R+n 000862 ** goto C 000863 ** D: cleanup 000864 ** 000865 ** The 4th template is used if the insert statement takes its 000866 ** values from a SELECT but the data is being inserted into a table 000867 ** that is also read as part of the SELECT. In the third form, 000868 ** we have to use an intermediate table to store the results of 000869 ** the select. The template is like this: 000870 ** 000871 ** X <- A 000872 ** goto B 000873 ** A: setup for the SELECT 000874 ** loop over the tables in the SELECT 000875 ** load value into register R..R+n 000876 ** yield X 000877 ** end loop 000878 ** cleanup after the SELECT 000879 ** end co-routine R 000880 ** B: open temp table 000881 ** L: yield X, at EOF goto M 000882 ** insert row from R..R+n into temp table 000883 ** goto L 000884 ** M: open write cursor to <table> and its indices 000885 ** rewind temp table 000886 ** C: loop over rows of intermediate table 000887 ** transfer values form intermediate table into <table> 000888 ** end loop 000889 ** D: cleanup 000890 */ 000891 void sqlite3Insert( 000892 Parse *pParse, /* Parser context */ 000893 SrcList *pTabList, /* Name of table into which we are inserting */ 000894 Select *pSelect, /* A SELECT statement to use as the data source */ 000895 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 000896 int onError, /* How to handle constraint errors */ 000897 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 000898 ){ 000899 sqlite3 *db; /* The main database structure */ 000900 Table *pTab; /* The table to insert into. aka TABLE */ 000901 int i, j; /* Loop counters */ 000902 Vdbe *v; /* Generate code into this virtual machine */ 000903 Index *pIdx; /* For looping over indices of the table */ 000904 int nColumn; /* Number of columns in the data */ 000905 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 000906 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 000907 int iIdxCur = 0; /* First index cursor */ 000908 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 000909 int endOfLoop; /* Label for the end of the insertion loop */ 000910 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 000911 int addrInsTop = 0; /* Jump to label "D" */ 000912 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 000913 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 000914 int iDb; /* Index of database holding TABLE */ 000915 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 000916 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 000917 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 000918 u8 bIdListInOrder; /* True if IDLIST is in table order */ 000919 ExprList *pList = 0; /* List of VALUES() to be inserted */ 000920 int iRegStore; /* Register in which to store next column */ 000921 000922 /* Register allocations */ 000923 int regFromSelect = 0;/* Base register for data coming from SELECT */ 000924 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 000925 int regRowCount = 0; /* Memory cell used for the row counter */ 000926 int regIns; /* Block of regs holding rowid+data being inserted */ 000927 int regRowid; /* registers holding insert rowid */ 000928 int regData; /* register holding first column to insert */ 000929 int *aRegIdx = 0; /* One register allocated to each index */ 000930 000931 #ifndef SQLITE_OMIT_TRIGGER 000932 int isView; /* True if attempting to insert into a view */ 000933 Trigger *pTrigger; /* List of triggers on pTab, if required */ 000934 int tmask; /* Mask of trigger times */ 000935 #endif 000936 000937 db = pParse->db; 000938 assert( db->pParse==pParse ); 000939 if( pParse->nErr ){ 000940 goto insert_cleanup; 000941 } 000942 assert( db->mallocFailed==0 ); 000943 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 000944 000945 /* If the Select object is really just a simple VALUES() list with a 000946 ** single row (the common case) then keep that one row of values 000947 ** and discard the other (unused) parts of the pSelect object 000948 */ 000949 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 000950 pList = pSelect->pEList; 000951 pSelect->pEList = 0; 000952 sqlite3SelectDelete(db, pSelect); 000953 pSelect = 0; 000954 } 000955 000956 /* Locate the table into which we will be inserting new information. 000957 */ 000958 assert( pTabList->nSrc==1 ); 000959 pTab = sqlite3SrcListLookup(pParse, pTabList); 000960 if( pTab==0 ){ 000961 goto insert_cleanup; 000962 } 000963 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000964 assert( iDb<db->nDb ); 000965 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 000966 db->aDb[iDb].zDbSName) ){ 000967 goto insert_cleanup; 000968 } 000969 withoutRowid = !HasRowid(pTab); 000970 000971 /* Figure out if we have any triggers and if the table being 000972 ** inserted into is a view 000973 */ 000974 #ifndef SQLITE_OMIT_TRIGGER 000975 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 000976 isView = IsView(pTab); 000977 #else 000978 # define pTrigger 0 000979 # define tmask 0 000980 # define isView 0 000981 #endif 000982 #ifdef SQLITE_OMIT_VIEW 000983 # undef isView 000984 # define isView 0 000985 #endif 000986 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 000987 000988 #if TREETRACE_ENABLED 000989 if( sqlite3TreeTrace & 0x10000 ){ 000990 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 000991 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 000992 onError, pUpsert, pTrigger); 000993 } 000994 #endif 000995 000996 /* If pTab is really a view, make sure it has been initialized. 000997 ** ViewGetColumnNames() is a no-op if pTab is not a view. 000998 */ 000999 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 001000 goto insert_cleanup; 001001 } 001002 001003 /* Cannot insert into a read-only table. 001004 */ 001005 if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ 001006 goto insert_cleanup; 001007 } 001008 001009 /* Allocate a VDBE 001010 */ 001011 v = sqlite3GetVdbe(pParse); 001012 if( v==0 ) goto insert_cleanup; 001013 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 001014 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 001015 001016 #ifndef SQLITE_OMIT_XFER_OPT 001017 /* If the statement is of the form 001018 ** 001019 ** INSERT INTO <table1> SELECT * FROM <table2>; 001020 ** 001021 ** Then special optimizations can be applied that make the transfer 001022 ** very fast and which reduce fragmentation of indices. 001023 ** 001024 ** This is the 2nd template. 001025 */ 001026 if( pColumn==0 001027 && pSelect!=0 001028 && pTrigger==0 001029 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 001030 ){ 001031 assert( !pTrigger ); 001032 assert( pList==0 ); 001033 goto insert_end; 001034 } 001035 #endif /* SQLITE_OMIT_XFER_OPT */ 001036 001037 /* If this is an AUTOINCREMENT table, look up the sequence number in the 001038 ** sqlite_sequence table and store it in memory cell regAutoinc. 001039 */ 001040 regAutoinc = autoIncBegin(pParse, iDb, pTab); 001041 001042 /* Allocate a block registers to hold the rowid and the values 001043 ** for all columns of the new row. 001044 */ 001045 regRowid = regIns = pParse->nMem+1; 001046 pParse->nMem += pTab->nCol + 1; 001047 if( IsVirtual(pTab) ){ 001048 regRowid++; 001049 pParse->nMem++; 001050 } 001051 regData = regRowid+1; 001052 001053 /* If the INSERT statement included an IDLIST term, then make sure 001054 ** all elements of the IDLIST really are columns of the table and 001055 ** remember the column indices. 001056 ** 001057 ** If the table has an INTEGER PRIMARY KEY column and that column 001058 ** is named in the IDLIST, then record in the ipkColumn variable 001059 ** the index into IDLIST of the primary key column. ipkColumn is 001060 ** the index of the primary key as it appears in IDLIST, not as 001061 ** is appears in the original table. (The index of the INTEGER 001062 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 001063 ** loop, if ipkColumn==(-1), that means that integer primary key 001064 ** is unspecified, and hence the table is either WITHOUT ROWID or 001065 ** it will automatically generated an integer primary key. 001066 ** 001067 ** bIdListInOrder is true if the columns in IDLIST are in storage 001068 ** order. This enables an optimization that avoids shuffling the 001069 ** columns into storage order. False negatives are harmless, 001070 ** but false positives will cause database corruption. 001071 */ 001072 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 001073 if( pColumn ){ 001074 assert( pColumn->eU4!=EU4_EXPR ); 001075 pColumn->eU4 = EU4_IDX; 001076 for(i=0; i<pColumn->nId; i++){ 001077 pColumn->a[i].u4.idx = -1; 001078 } 001079 for(i=0; i<pColumn->nId; i++){ 001080 for(j=0; j<pTab->nCol; j++){ 001081 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 001082 pColumn->a[i].u4.idx = j; 001083 if( i!=j ) bIdListInOrder = 0; 001084 if( j==pTab->iPKey ){ 001085 ipkColumn = i; assert( !withoutRowid ); 001086 } 001087 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001088 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 001089 sqlite3ErrorMsg(pParse, 001090 "cannot INSERT into generated column \"%s\"", 001091 pTab->aCol[j].zCnName); 001092 goto insert_cleanup; 001093 } 001094 #endif 001095 break; 001096 } 001097 } 001098 if( j>=pTab->nCol ){ 001099 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 001100 ipkColumn = i; 001101 bIdListInOrder = 0; 001102 }else{ 001103 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 001104 pTabList->a, pColumn->a[i].zName); 001105 pParse->checkSchema = 1; 001106 goto insert_cleanup; 001107 } 001108 } 001109 } 001110 } 001111 001112 /* Figure out how many columns of data are supplied. If the data 001113 ** is coming from a SELECT statement, then generate a co-routine that 001114 ** produces a single row of the SELECT on each invocation. The 001115 ** co-routine is the common header to the 3rd and 4th templates. 001116 */ 001117 if( pSelect ){ 001118 /* Data is coming from a SELECT or from a multi-row VALUES clause. 001119 ** Generate a co-routine to run the SELECT. */ 001120 int rc; /* Result code */ 001121 001122 if( pSelect->pSrc->nSrc==1 001123 && pSelect->pSrc->a[0].fg.viaCoroutine 001124 && pSelect->pPrior==0 001125 ){ 001126 SrcItem *pItem = &pSelect->pSrc->a[0]; 001127 Subquery *pSubq; 001128 assert( pItem->fg.isSubquery ); 001129 pSubq = pItem->u4.pSubq; 001130 dest.iSDParm = pSubq->regReturn; 001131 regFromSelect = pSubq->regResult; 001132 assert( pSubq->pSelect!=0 ); 001133 assert( pSubq->pSelect->pEList!=0 ); 001134 nColumn = pSubq->pSelect->pEList->nExpr; 001135 ExplainQueryPlan((pParse, 0, "SCAN %S", pItem)); 001136 if( bIdListInOrder && nColumn==pTab->nCol ){ 001137 regData = regFromSelect; 001138 regRowid = regData - 1; 001139 regIns = regRowid - (IsVirtual(pTab) ? 1 : 0); 001140 } 001141 }else{ 001142 int addrTop; /* Top of the co-routine */ 001143 int regYield = ++pParse->nMem; 001144 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 001145 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 001146 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 001147 dest.iSdst = bIdListInOrder ? regData : 0; 001148 dest.nSdst = pTab->nCol; 001149 rc = sqlite3Select(pParse, pSelect, &dest); 001150 regFromSelect = dest.iSdst; 001151 assert( db->pParse==pParse ); 001152 if( rc || pParse->nErr ) goto insert_cleanup; 001153 assert( db->mallocFailed==0 ); 001154 sqlite3VdbeEndCoroutine(v, regYield); 001155 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 001156 assert( pSelect->pEList ); 001157 nColumn = pSelect->pEList->nExpr; 001158 } 001159 001160 /* Set useTempTable to TRUE if the result of the SELECT statement 001161 ** should be written into a temporary table (template 4). Set to 001162 ** FALSE if each output row of the SELECT can be written directly into 001163 ** the destination table (template 3). 001164 ** 001165 ** A temp table must be used if the table being updated is also one 001166 ** of the tables being read by the SELECT statement. Also use a 001167 ** temp table in the case of row triggers. 001168 */ 001169 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 001170 useTempTable = 1; 001171 } 001172 001173 if( useTempTable ){ 001174 /* Invoke the coroutine to extract information from the SELECT 001175 ** and add it to a transient table srcTab. The code generated 001176 ** here is from the 4th template: 001177 ** 001178 ** B: open temp table 001179 ** L: yield X, goto M at EOF 001180 ** insert row from R..R+n into temp table 001181 ** goto L 001182 ** M: ... 001183 */ 001184 int regRec; /* Register to hold packed record */ 001185 int regTempRowid; /* Register to hold temp table ROWID */ 001186 int addrL; /* Label "L" */ 001187 001188 srcTab = pParse->nTab++; 001189 regRec = sqlite3GetTempReg(pParse); 001190 regTempRowid = sqlite3GetTempReg(pParse); 001191 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 001192 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 001193 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 001194 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 001195 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 001196 sqlite3VdbeGoto(v, addrL); 001197 sqlite3VdbeJumpHere(v, addrL); 001198 sqlite3ReleaseTempReg(pParse, regRec); 001199 sqlite3ReleaseTempReg(pParse, regTempRowid); 001200 } 001201 }else{ 001202 /* This is the case if the data for the INSERT is coming from a 001203 ** single-row VALUES clause 001204 */ 001205 NameContext sNC; 001206 memset(&sNC, 0, sizeof(sNC)); 001207 sNC.pParse = pParse; 001208 srcTab = -1; 001209 assert( useTempTable==0 ); 001210 if( pList ){ 001211 nColumn = pList->nExpr; 001212 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 001213 goto insert_cleanup; 001214 } 001215 }else{ 001216 nColumn = 0; 001217 } 001218 } 001219 001220 /* If there is no IDLIST term but the table has an integer primary 001221 ** key, the set the ipkColumn variable to the integer primary key 001222 ** column index in the original table definition. 001223 */ 001224 if( pColumn==0 && nColumn>0 ){ 001225 ipkColumn = pTab->iPKey; 001226 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001227 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 001228 testcase( pTab->tabFlags & TF_HasVirtual ); 001229 testcase( pTab->tabFlags & TF_HasStored ); 001230 for(i=ipkColumn-1; i>=0; i--){ 001231 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 001232 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 001233 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 001234 ipkColumn--; 001235 } 001236 } 001237 } 001238 #endif 001239 001240 /* Make sure the number of columns in the source data matches the number 001241 ** of columns to be inserted into the table. 001242 */ 001243 assert( TF_HasHidden==COLFLAG_HIDDEN ); 001244 assert( TF_HasGenerated==COLFLAG_GENERATED ); 001245 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 001246 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 001247 for(i=0; i<pTab->nCol; i++){ 001248 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 001249 } 001250 } 001251 if( nColumn!=(pTab->nCol-nHidden) ){ 001252 sqlite3ErrorMsg(pParse, 001253 "table %S has %d columns but %d values were supplied", 001254 pTabList->a, pTab->nCol-nHidden, nColumn); 001255 goto insert_cleanup; 001256 } 001257 } 001258 if( pColumn!=0 && nColumn!=pColumn->nId ){ 001259 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 001260 goto insert_cleanup; 001261 } 001262 001263 /* Initialize the count of rows to be inserted 001264 */ 001265 if( (db->flags & SQLITE_CountRows)!=0 001266 && !pParse->nested 001267 && !pParse->pTriggerTab 001268 && !pParse->bReturning 001269 ){ 001270 regRowCount = ++pParse->nMem; 001271 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 001272 } 001273 001274 /* If this is not a view, open the table and and all indices */ 001275 if( !isView ){ 001276 int nIdx; 001277 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 001278 &iDataCur, &iIdxCur); 001279 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 001280 if( aRegIdx==0 ){ 001281 goto insert_cleanup; 001282 } 001283 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 001284 assert( pIdx ); 001285 aRegIdx[i] = ++pParse->nMem; 001286 pParse->nMem += pIdx->nColumn; 001287 } 001288 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 001289 } 001290 #ifndef SQLITE_OMIT_UPSERT 001291 if( pUpsert ){ 001292 Upsert *pNx; 001293 if( IsVirtual(pTab) ){ 001294 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 001295 pTab->zName); 001296 goto insert_cleanup; 001297 } 001298 if( IsView(pTab) ){ 001299 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 001300 goto insert_cleanup; 001301 } 001302 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 001303 goto insert_cleanup; 001304 } 001305 pTabList->a[0].iCursor = iDataCur; 001306 pNx = pUpsert; 001307 do{ 001308 pNx->pUpsertSrc = pTabList; 001309 pNx->regData = regData; 001310 pNx->iDataCur = iDataCur; 001311 pNx->iIdxCur = iIdxCur; 001312 if( pNx->pUpsertTarget ){ 001313 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx, pUpsert) ){ 001314 goto insert_cleanup; 001315 } 001316 } 001317 pNx = pNx->pNextUpsert; 001318 }while( pNx!=0 ); 001319 } 001320 #endif 001321 001322 001323 /* This is the top of the main insertion loop */ 001324 if( useTempTable ){ 001325 /* This block codes the top of loop only. The complete loop is the 001326 ** following pseudocode (template 4): 001327 ** 001328 ** rewind temp table, if empty goto D 001329 ** C: loop over rows of intermediate table 001330 ** transfer values form intermediate table into <table> 001331 ** end loop 001332 ** D: ... 001333 */ 001334 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 001335 addrCont = sqlite3VdbeCurrentAddr(v); 001336 }else if( pSelect ){ 001337 /* This block codes the top of loop only. The complete loop is the 001338 ** following pseudocode (template 3): 001339 ** 001340 ** C: yield X, at EOF goto D 001341 ** insert the select result into <table> from R..R+n 001342 ** goto C 001343 ** D: ... 001344 */ 001345 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 001346 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 001347 VdbeCoverage(v); 001348 if( ipkColumn>=0 ){ 001349 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 001350 ** SELECT, go ahead and copy the value into the rowid slot now, so that 001351 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 001352 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 001353 } 001354 } 001355 001356 /* Compute data for ordinary columns of the new entry. Values 001357 ** are written in storage order into registers starting with regData. 001358 ** Only ordinary columns are computed in this loop. The rowid 001359 ** (if there is one) is computed later and generated columns are 001360 ** computed after the rowid since they might depend on the value 001361 ** of the rowid. 001362 */ 001363 nHidden = 0; 001364 iRegStore = regData; assert( regData==regRowid+1 ); 001365 for(i=0; i<pTab->nCol; i++, iRegStore++){ 001366 int k; 001367 u32 colFlags; 001368 assert( i>=nHidden ); 001369 if( i==pTab->iPKey ){ 001370 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 001371 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 001372 ** using excess space. The file format definition requires this extra 001373 ** NULL - we cannot optimize further by skipping the column completely */ 001374 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001375 continue; 001376 } 001377 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 001378 nHidden++; 001379 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 001380 /* Virtual columns do not participate in OP_MakeRecord. So back up 001381 ** iRegStore by one slot to compensate for the iRegStore++ in the 001382 ** outer for() loop */ 001383 iRegStore--; 001384 continue; 001385 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 001386 /* Stored columns are computed later. But if there are BEFORE 001387 ** triggers, the slots used for stored columns will be OP_Copy-ed 001388 ** to a second block of registers, so the register needs to be 001389 ** initialized to NULL to avoid an uninitialized register read */ 001390 if( tmask & TRIGGER_BEFORE ){ 001391 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001392 } 001393 continue; 001394 }else if( pColumn==0 ){ 001395 /* Hidden columns that are not explicitly named in the INSERT 001396 ** get there default value */ 001397 sqlite3ExprCodeFactorable(pParse, 001398 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001399 iRegStore); 001400 continue; 001401 } 001402 } 001403 if( pColumn ){ 001404 assert( pColumn->eU4==EU4_IDX ); 001405 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 001406 if( j>=pColumn->nId ){ 001407 /* A column not named in the insert column list gets its 001408 ** default value */ 001409 sqlite3ExprCodeFactorable(pParse, 001410 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001411 iRegStore); 001412 continue; 001413 } 001414 k = j; 001415 }else if( nColumn==0 ){ 001416 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 001417 sqlite3ExprCodeFactorable(pParse, 001418 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001419 iRegStore); 001420 continue; 001421 }else{ 001422 k = i - nHidden; 001423 } 001424 001425 if( useTempTable ){ 001426 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 001427 }else if( pSelect ){ 001428 if( regFromSelect!=regData ){ 001429 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 001430 } 001431 }else{ 001432 Expr *pX = pList->a[k].pExpr; 001433 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 001434 if( y!=iRegStore ){ 001435 sqlite3VdbeAddOp2(v, 001436 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 001437 } 001438 } 001439 } 001440 001441 001442 /* Run the BEFORE and INSTEAD OF triggers, if there are any 001443 */ 001444 endOfLoop = sqlite3VdbeMakeLabel(pParse); 001445 if( tmask & TRIGGER_BEFORE ){ 001446 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 001447 001448 /* build the NEW.* reference row. Note that if there is an INTEGER 001449 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 001450 ** translated into a unique ID for the row. But on a BEFORE trigger, 001451 ** we do not know what the unique ID will be (because the insert has 001452 ** not happened yet) so we substitute a rowid of -1 001453 */ 001454 if( ipkColumn<0 ){ 001455 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001456 }else{ 001457 int addr1; 001458 assert( !withoutRowid ); 001459 if( useTempTable ){ 001460 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 001461 }else{ 001462 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 001463 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 001464 } 001465 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 001466 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001467 sqlite3VdbeJumpHere(v, addr1); 001468 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 001469 } 001470 001471 /* Copy the new data already generated. */ 001472 assert( pTab->nNVCol>0 || pParse->nErr>0 ); 001473 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 001474 001475 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001476 /* Compute the new value for generated columns after all other 001477 ** columns have already been computed. This must be done after 001478 ** computing the ROWID in case one of the generated columns 001479 ** refers to the ROWID. */ 001480 if( pTab->tabFlags & TF_HasGenerated ){ 001481 testcase( pTab->tabFlags & TF_HasVirtual ); 001482 testcase( pTab->tabFlags & TF_HasStored ); 001483 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 001484 } 001485 #endif 001486 001487 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 001488 ** do not attempt any conversions before assembling the record. 001489 ** If this is a real table, attempt conversions as required by the 001490 ** table column affinities. 001491 */ 001492 if( !isView ){ 001493 sqlite3TableAffinity(v, pTab, regCols+1); 001494 } 001495 001496 /* Fire BEFORE or INSTEAD OF triggers */ 001497 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 001498 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 001499 001500 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 001501 } 001502 001503 if( !isView ){ 001504 if( IsVirtual(pTab) ){ 001505 /* The row that the VUpdate opcode will delete: none */ 001506 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 001507 } 001508 if( ipkColumn>=0 ){ 001509 /* Compute the new rowid */ 001510 if( useTempTable ){ 001511 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 001512 }else if( pSelect ){ 001513 /* Rowid already initialized at tag-20191021-001 */ 001514 }else{ 001515 Expr *pIpk = pList->a[ipkColumn].pExpr; 001516 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 001517 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001518 appendFlag = 1; 001519 }else{ 001520 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 001521 } 001522 } 001523 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 001524 ** to generate a unique primary key value. 001525 */ 001526 if( !appendFlag ){ 001527 int addr1; 001528 if( !IsVirtual(pTab) ){ 001529 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 001530 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001531 sqlite3VdbeJumpHere(v, addr1); 001532 }else{ 001533 addr1 = sqlite3VdbeCurrentAddr(v); 001534 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 001535 } 001536 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 001537 } 001538 }else if( IsVirtual(pTab) || withoutRowid ){ 001539 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 001540 }else{ 001541 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001542 appendFlag = 1; 001543 } 001544 autoIncStep(pParse, regAutoinc, regRowid); 001545 001546 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001547 /* Compute the new value for generated columns after all other 001548 ** columns have already been computed. This must be done after 001549 ** computing the ROWID in case one of the generated columns 001550 ** is derived from the INTEGER PRIMARY KEY. */ 001551 if( pTab->tabFlags & TF_HasGenerated ){ 001552 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 001553 } 001554 #endif 001555 001556 /* Generate code to check constraints and generate index keys and 001557 ** do the insertion. 001558 */ 001559 #ifndef SQLITE_OMIT_VIRTUALTABLE 001560 if( IsVirtual(pTab) ){ 001561 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 001562 sqlite3VtabMakeWritable(pParse, pTab); 001563 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 001564 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 001565 sqlite3MayAbort(pParse); 001566 }else 001567 #endif 001568 { 001569 int isReplace = 0;/* Set to true if constraints may cause a replace */ 001570 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 001571 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 001572 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 001573 ); 001574 if( db->flags & SQLITE_ForeignKeys ){ 001575 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 001576 } 001577 001578 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 001579 ** constraints or (b) there are no triggers and this table is not a 001580 ** parent table in a foreign key constraint. It is safe to set the 001581 ** flag in the second case as if any REPLACE constraint is hit, an 001582 ** OP_Delete or OP_IdxDelete instruction will be executed on each 001583 ** cursor that is disturbed. And these instructions both clear the 001584 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 001585 ** functionality. */ 001586 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 001587 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 001588 regIns, aRegIdx, 0, appendFlag, bUseSeek 001589 ); 001590 } 001591 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 001592 }else if( pParse->bReturning ){ 001593 /* If there is a RETURNING clause, populate the rowid register with 001594 ** constant value -1, in case one or more of the returned expressions 001595 ** refer to the "rowid" of the view. */ 001596 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 001597 #endif 001598 } 001599 001600 /* Update the count of rows that are inserted 001601 */ 001602 if( regRowCount ){ 001603 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 001604 } 001605 001606 if( pTrigger ){ 001607 /* Code AFTER triggers */ 001608 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 001609 pTab, regData-2-pTab->nCol, onError, endOfLoop); 001610 } 001611 001612 /* The bottom of the main insertion loop, if the data source 001613 ** is a SELECT statement. 001614 */ 001615 sqlite3VdbeResolveLabel(v, endOfLoop); 001616 if( useTempTable ){ 001617 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 001618 sqlite3VdbeJumpHere(v, addrInsTop); 001619 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 001620 }else if( pSelect ){ 001621 sqlite3VdbeGoto(v, addrCont); 001622 #ifdef SQLITE_DEBUG 001623 /* If we are jumping back to an OP_Yield that is preceded by an 001624 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 001625 ** OP_ReleaseReg will be included in the loop. */ 001626 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 001627 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 001628 sqlite3VdbeChangeP5(v, 1); 001629 } 001630 #endif 001631 sqlite3VdbeJumpHere(v, addrInsTop); 001632 } 001633 001634 #ifndef SQLITE_OMIT_XFER_OPT 001635 insert_end: 001636 #endif /* SQLITE_OMIT_XFER_OPT */ 001637 /* Update the sqlite_sequence table by storing the content of the 001638 ** maximum rowid counter values recorded while inserting into 001639 ** autoincrement tables. 001640 */ 001641 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 001642 sqlite3AutoincrementEnd(pParse); 001643 } 001644 001645 /* 001646 ** Return the number of rows inserted. If this routine is 001647 ** generating code because of a call to sqlite3NestedParse(), do not 001648 ** invoke the callback function. 001649 */ 001650 if( regRowCount ){ 001651 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 001652 } 001653 001654 insert_cleanup: 001655 sqlite3SrcListDelete(db, pTabList); 001656 sqlite3ExprListDelete(db, pList); 001657 sqlite3UpsertDelete(db, pUpsert); 001658 sqlite3SelectDelete(db, pSelect); 001659 sqlite3IdListDelete(db, pColumn); 001660 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 001661 } 001662 001663 /* Make sure "isView" and other macros defined above are undefined. Otherwise 001664 ** they may interfere with compilation of other functions in this file 001665 ** (or in another file, if this file becomes part of the amalgamation). */ 001666 #ifdef isView 001667 #undef isView 001668 #endif 001669 #ifdef pTrigger 001670 #undef pTrigger 001671 #endif 001672 #ifdef tmask 001673 #undef tmask 001674 #endif 001675 001676 /* 001677 ** Meanings of bits in of pWalker->eCode for 001678 ** sqlite3ExprReferencesUpdatedColumn() 001679 */ 001680 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 001681 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 001682 001683 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 001684 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 001685 ** expression node references any of the 001686 ** columns that are being modified by an UPDATE statement. 001687 */ 001688 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 001689 if( pExpr->op==TK_COLUMN ){ 001690 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 001691 if( pExpr->iColumn>=0 ){ 001692 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 001693 pWalker->eCode |= CKCNSTRNT_COLUMN; 001694 } 001695 }else{ 001696 pWalker->eCode |= CKCNSTRNT_ROWID; 001697 } 001698 } 001699 return WRC_Continue; 001700 } 001701 001702 /* 001703 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 001704 ** only columns that are modified by the UPDATE are those for which 001705 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 001706 ** 001707 ** Return true if CHECK constraint pExpr uses any of the 001708 ** changing columns (or the rowid if it is changing). In other words, 001709 ** return true if this CHECK constraint must be validated for 001710 ** the new row in the UPDATE statement. 001711 ** 001712 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 001713 ** The operation of this routine is the same - return true if an only if 001714 ** the expression uses one or more of columns identified by the second and 001715 ** third arguments. 001716 */ 001717 int sqlite3ExprReferencesUpdatedColumn( 001718 Expr *pExpr, /* The expression to be checked */ 001719 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 001720 int chngRowid /* True if UPDATE changes the rowid */ 001721 ){ 001722 Walker w; 001723 memset(&w, 0, sizeof(w)); 001724 w.eCode = 0; 001725 w.xExprCallback = checkConstraintExprNode; 001726 w.u.aiCol = aiChng; 001727 sqlite3WalkExpr(&w, pExpr); 001728 if( !chngRowid ){ 001729 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 001730 w.eCode &= ~CKCNSTRNT_ROWID; 001731 } 001732 testcase( w.eCode==0 ); 001733 testcase( w.eCode==CKCNSTRNT_COLUMN ); 001734 testcase( w.eCode==CKCNSTRNT_ROWID ); 001735 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 001736 return w.eCode!=0; 001737 } 001738 001739 /* 001740 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 001741 ** the indexes of a table in the order provided in the Table->pIndex list. 001742 ** However, sometimes (rarely - when there is an upsert) it wants to visit 001743 ** the indexes in a different order. The following data structures accomplish 001744 ** this. 001745 ** 001746 ** The IndexIterator object is used to walk through all of the indexes 001747 ** of a table in either Index.pNext order, or in some other order established 001748 ** by an array of IndexListTerm objects. 001749 */ 001750 typedef struct IndexListTerm IndexListTerm; 001751 typedef struct IndexIterator IndexIterator; 001752 struct IndexIterator { 001753 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 001754 int i; /* Index of the current item from the list */ 001755 union { 001756 struct { /* Use this object for eType==0: A Index.pNext list */ 001757 Index *pIdx; /* The current Index */ 001758 } lx; 001759 struct { /* Use this object for eType==1; Array of IndexListTerm */ 001760 int nIdx; /* Size of the array */ 001761 IndexListTerm *aIdx; /* Array of IndexListTerms */ 001762 } ax; 001763 } u; 001764 }; 001765 001766 /* When IndexIterator.eType==1, then each index is an array of instances 001767 ** of the following object 001768 */ 001769 struct IndexListTerm { 001770 Index *p; /* The index */ 001771 int ix; /* Which entry in the original Table.pIndex list is this index*/ 001772 }; 001773 001774 /* Return the first index on the list */ 001775 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 001776 assert( pIter->i==0 ); 001777 if( pIter->eType ){ 001778 *pIx = pIter->u.ax.aIdx[0].ix; 001779 return pIter->u.ax.aIdx[0].p; 001780 }else{ 001781 *pIx = 0; 001782 return pIter->u.lx.pIdx; 001783 } 001784 } 001785 001786 /* Return the next index from the list. Return NULL when out of indexes */ 001787 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 001788 if( pIter->eType ){ 001789 int i = ++pIter->i; 001790 if( i>=pIter->u.ax.nIdx ){ 001791 *pIx = i; 001792 return 0; 001793 } 001794 *pIx = pIter->u.ax.aIdx[i].ix; 001795 return pIter->u.ax.aIdx[i].p; 001796 }else{ 001797 ++(*pIx); 001798 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 001799 return pIter->u.lx.pIdx; 001800 } 001801 } 001802 001803 /* 001804 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 001805 ** on table pTab. 001806 ** 001807 ** The regNewData parameter is the first register in a range that contains 001808 ** the data to be inserted or the data after the update. There will be 001809 ** pTab->nCol+1 registers in this range. The first register (the one 001810 ** that regNewData points to) will contain the new rowid, or NULL in the 001811 ** case of a WITHOUT ROWID table. The second register in the range will 001812 ** contain the content of the first table column. The third register will 001813 ** contain the content of the second table column. And so forth. 001814 ** 001815 ** The regOldData parameter is similar to regNewData except that it contains 001816 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 001817 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 001818 ** checking regOldData for zero. 001819 ** 001820 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 001821 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 001822 ** might be modified by the UPDATE. If pkChng is false, then the key of 001823 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 001824 ** 001825 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 001826 ** was explicitly specified as part of the INSERT statement. If pkChng 001827 ** is zero, it means that the either rowid is computed automatically or 001828 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 001829 ** pkChng will only be true if the INSERT statement provides an integer 001830 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 001831 ** 001832 ** The code generated by this routine will store new index entries into 001833 ** registers identified by aRegIdx[]. No index entry is created for 001834 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 001835 ** the same as the order of indices on the linked list of indices 001836 ** at pTab->pIndex. 001837 ** 001838 ** (2019-05-07) The generated code also creates a new record for the 001839 ** main table, if pTab is a rowid table, and stores that record in the 001840 ** register identified by aRegIdx[nIdx] - in other words in the first 001841 ** entry of aRegIdx[] past the last index. It is important that the 001842 ** record be generated during constraint checks to avoid affinity changes 001843 ** to the register content that occur after constraint checks but before 001844 ** the new record is inserted. 001845 ** 001846 ** The caller must have already opened writeable cursors on the main 001847 ** table and all applicable indices (that is to say, all indices for which 001848 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 001849 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 001850 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 001851 ** for the first index in the pTab->pIndex list. Cursors for other indices 001852 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 001853 ** 001854 ** This routine also generates code to check constraints. NOT NULL, 001855 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 001856 ** then the appropriate action is performed. There are five possible 001857 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 001858 ** 001859 ** Constraint type Action What Happens 001860 ** --------------- ---------- ---------------------------------------- 001861 ** any ROLLBACK The current transaction is rolled back and 001862 ** sqlite3_step() returns immediately with a 001863 ** return code of SQLITE_CONSTRAINT. 001864 ** 001865 ** any ABORT Back out changes from the current command 001866 ** only (do not do a complete rollback) then 001867 ** cause sqlite3_step() to return immediately 001868 ** with SQLITE_CONSTRAINT. 001869 ** 001870 ** any FAIL Sqlite3_step() returns immediately with a 001871 ** return code of SQLITE_CONSTRAINT. The 001872 ** transaction is not rolled back and any 001873 ** changes to prior rows are retained. 001874 ** 001875 ** any IGNORE The attempt in insert or update the current 001876 ** row is skipped, without throwing an error. 001877 ** Processing continues with the next row. 001878 ** (There is an immediate jump to ignoreDest.) 001879 ** 001880 ** NOT NULL REPLACE The NULL value is replace by the default 001881 ** value for that column. If the default value 001882 ** is NULL, the action is the same as ABORT. 001883 ** 001884 ** UNIQUE REPLACE The other row that conflicts with the row 001885 ** being inserted is removed. 001886 ** 001887 ** CHECK REPLACE Illegal. The results in an exception. 001888 ** 001889 ** Which action to take is determined by the overrideError parameter. 001890 ** Or if overrideError==OE_Default, then the pParse->onError parameter 001891 ** is used. Or if pParse->onError==OE_Default then the onError value 001892 ** for the constraint is used. 001893 */ 001894 void sqlite3GenerateConstraintChecks( 001895 Parse *pParse, /* The parser context */ 001896 Table *pTab, /* The table being inserted or updated */ 001897 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 001898 int iDataCur, /* Canonical data cursor (main table or PK index) */ 001899 int iIdxCur, /* First index cursor */ 001900 int regNewData, /* First register in a range holding values to insert */ 001901 int regOldData, /* Previous content. 0 for INSERTs */ 001902 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 001903 u8 overrideError, /* Override onError to this if not OE_Default */ 001904 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 001905 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 001906 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 001907 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 001908 ){ 001909 Vdbe *v; /* VDBE under construction */ 001910 Index *pIdx; /* Pointer to one of the indices */ 001911 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 001912 sqlite3 *db; /* Database connection */ 001913 int i; /* loop counter */ 001914 int ix; /* Index loop counter */ 001915 int nCol; /* Number of columns */ 001916 int onError; /* Conflict resolution strategy */ 001917 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 001918 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 001919 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 001920 u8 isUpdate; /* True if this is an UPDATE operation */ 001921 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 001922 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 001923 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 001924 int ipkTop = 0; /* Top of the IPK uniqueness check */ 001925 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 001926 /* Variables associated with retesting uniqueness constraints after 001927 ** replace triggers fire have run */ 001928 int regTrigCnt; /* Register used to count replace trigger invocations */ 001929 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 001930 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 001931 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 001932 int nReplaceTrig = 0; /* Number of replace triggers coded */ 001933 IndexIterator sIdxIter; /* Index iterator */ 001934 001935 isUpdate = regOldData!=0; 001936 db = pParse->db; 001937 v = pParse->pVdbe; 001938 assert( v!=0 ); 001939 assert( !IsView(pTab) ); /* This table is not a VIEW */ 001940 nCol = pTab->nCol; 001941 001942 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 001943 ** normal rowid tables. nPkField is the number of key fields in the 001944 ** pPk index or 1 for a rowid table. In other words, nPkField is the 001945 ** number of fields in the true primary key of the table. */ 001946 if( HasRowid(pTab) ){ 001947 pPk = 0; 001948 nPkField = 1; 001949 }else{ 001950 pPk = sqlite3PrimaryKeyIndex(pTab); 001951 nPkField = pPk->nKeyCol; 001952 } 001953 001954 /* Record that this module has started */ 001955 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 001956 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 001957 001958 /* Test all NOT NULL constraints. 001959 */ 001960 if( pTab->tabFlags & TF_HasNotNull ){ 001961 int b2ndPass = 0; /* True if currently running 2nd pass */ 001962 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 001963 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 001964 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 001965 for(i=0; i<nCol; i++){ 001966 int iReg; /* Register holding column value */ 001967 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 001968 int isGenerated; /* non-zero if column is generated */ 001969 onError = pCol->notNull; 001970 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 001971 if( i==pTab->iPKey ){ 001972 continue; /* ROWID is never NULL */ 001973 } 001974 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 001975 if( isGenerated && !b2ndPass ){ 001976 nGenerated++; 001977 continue; /* Generated columns processed on 2nd pass */ 001978 } 001979 if( aiChng && aiChng[i]<0 && !isGenerated ){ 001980 /* Do not check NOT NULL on columns that do not change */ 001981 continue; 001982 } 001983 if( overrideError!=OE_Default ){ 001984 onError = overrideError; 001985 }else if( onError==OE_Default ){ 001986 onError = OE_Abort; 001987 } 001988 if( onError==OE_Replace ){ 001989 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 001990 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 001991 ){ 001992 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001993 testcase( pCol->colFlags & COLFLAG_STORED ); 001994 testcase( pCol->colFlags & COLFLAG_GENERATED ); 001995 onError = OE_Abort; 001996 }else{ 001997 assert( !isGenerated ); 001998 } 001999 }else if( b2ndPass && !isGenerated ){ 002000 continue; 002001 } 002002 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002003 || onError==OE_Ignore || onError==OE_Replace ); 002004 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 002005 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 002006 switch( onError ){ 002007 case OE_Replace: { 002008 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 002009 VdbeCoverage(v); 002010 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 002011 nSeenReplace++; 002012 sqlite3ExprCodeCopy(pParse, 002013 sqlite3ColumnExpr(pTab, pCol), iReg); 002014 sqlite3VdbeJumpHere(v, addr1); 002015 break; 002016 } 002017 case OE_Abort: 002018 sqlite3MayAbort(pParse); 002019 /* no break */ deliberate_fall_through 002020 case OE_Rollback: 002021 case OE_Fail: { 002022 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 002023 pCol->zCnName); 002024 testcase( zMsg==0 && db->mallocFailed==0 ); 002025 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 002026 onError, iReg); 002027 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 002028 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 002029 VdbeCoverage(v); 002030 break; 002031 } 002032 default: { 002033 assert( onError==OE_Ignore ); 002034 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 002035 VdbeCoverage(v); 002036 break; 002037 } 002038 } /* end switch(onError) */ 002039 } /* end loop i over columns */ 002040 if( nGenerated==0 && nSeenReplace==0 ){ 002041 /* If there are no generated columns with NOT NULL constraints 002042 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 002043 ** pass is sufficient */ 002044 break; 002045 } 002046 if( b2ndPass ) break; /* Never need more than 2 passes */ 002047 b2ndPass = 1; 002048 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 002049 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 002050 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 002051 ** first pass, recomputed values for all generated columns, as 002052 ** those values might depend on columns affected by the REPLACE. 002053 */ 002054 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 002055 } 002056 #endif 002057 } /* end of 2-pass loop */ 002058 } /* end if( has-not-null-constraints ) */ 002059 002060 /* Test all CHECK constraints 002061 */ 002062 #ifndef SQLITE_OMIT_CHECK 002063 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 002064 ExprList *pCheck = pTab->pCheck; 002065 pParse->iSelfTab = -(regNewData+1); 002066 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 002067 for(i=0; i<pCheck->nExpr; i++){ 002068 int allOk; 002069 Expr *pCopy; 002070 Expr *pExpr = pCheck->a[i].pExpr; 002071 if( aiChng 002072 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 002073 ){ 002074 /* The check constraints do not reference any of the columns being 002075 ** updated so there is no point it verifying the check constraint */ 002076 continue; 002077 } 002078 if( bAffinityDone==0 ){ 002079 sqlite3TableAffinity(v, pTab, regNewData+1); 002080 bAffinityDone = 1; 002081 } 002082 allOk = sqlite3VdbeMakeLabel(pParse); 002083 sqlite3VdbeVerifyAbortable(v, onError); 002084 pCopy = sqlite3ExprDup(db, pExpr, 0); 002085 if( !db->mallocFailed ){ 002086 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 002087 } 002088 sqlite3ExprDelete(db, pCopy); 002089 if( onError==OE_Ignore ){ 002090 sqlite3VdbeGoto(v, ignoreDest); 002091 }else{ 002092 char *zName = pCheck->a[i].zEName; 002093 assert( zName!=0 || pParse->db->mallocFailed ); 002094 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 002095 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 002096 onError, zName, P4_TRANSIENT, 002097 P5_ConstraintCheck); 002098 } 002099 sqlite3VdbeResolveLabel(v, allOk); 002100 } 002101 pParse->iSelfTab = 0; 002102 } 002103 #endif /* !defined(SQLITE_OMIT_CHECK) */ 002104 002105 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 002106 ** order: 002107 ** 002108 ** (1) OE_Update 002109 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 002110 ** (3) OE_Replace 002111 ** 002112 ** OE_Fail and OE_Ignore must happen before any changes are made. 002113 ** OE_Update guarantees that only a single row will change, so it 002114 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 002115 ** could happen in any order, but they are grouped up front for 002116 ** convenience. 002117 ** 002118 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 002119 ** The order of constraints used to have OE_Update as (2) and OE_Abort 002120 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 002121 ** constraint before any others, so it had to be moved. 002122 ** 002123 ** Constraint checking code is generated in this order: 002124 ** (A) The rowid constraint 002125 ** (B) Unique index constraints that do not have OE_Replace as their 002126 ** default conflict resolution strategy 002127 ** (C) Unique index that do use OE_Replace by default. 002128 ** 002129 ** The ordering of (2) and (3) is accomplished by making sure the linked 002130 ** list of indexes attached to a table puts all OE_Replace indexes last 002131 ** in the list. See sqlite3CreateIndex() for where that happens. 002132 */ 002133 sIdxIter.eType = 0; 002134 sIdxIter.i = 0; 002135 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 002136 sIdxIter.u.lx.pIdx = pTab->pIndex; 002137 if( pUpsert ){ 002138 if( pUpsert->pUpsertTarget==0 ){ 002139 /* There is just on ON CONFLICT clause and it has no constraint-target */ 002140 assert( pUpsert->pNextUpsert==0 ); 002141 if( pUpsert->isDoUpdate==0 ){ 002142 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 002143 ** Make all unique constraint resolution be OE_Ignore */ 002144 overrideError = OE_Ignore; 002145 pUpsert = 0; 002146 }else{ 002147 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 002148 overrideError = OE_Update; 002149 } 002150 }else if( pTab->pIndex!=0 ){ 002151 /* Otherwise, we'll need to run the IndexListTerm array version of the 002152 ** iterator to ensure that all of the ON CONFLICT conditions are 002153 ** checked first and in order. */ 002154 int nIdx, jj; 002155 u64 nByte; 002156 Upsert *pTerm; 002157 u8 *bUsed; 002158 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 002159 assert( aRegIdx[nIdx]>0 ); 002160 } 002161 sIdxIter.eType = 1; 002162 sIdxIter.u.ax.nIdx = nIdx; 002163 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 002164 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 002165 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 002166 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 002167 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 002168 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 002169 if( pTerm->pUpsertTarget==0 ) break; 002170 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 002171 jj = 0; 002172 pIdx = pTab->pIndex; 002173 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 002174 pIdx = pIdx->pNext; 002175 jj++; 002176 } 002177 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 002178 bUsed[jj] = 1; 002179 sIdxIter.u.ax.aIdx[i].p = pIdx; 002180 sIdxIter.u.ax.aIdx[i].ix = jj; 002181 i++; 002182 } 002183 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 002184 if( bUsed[jj] ) continue; 002185 sIdxIter.u.ax.aIdx[i].p = pIdx; 002186 sIdxIter.u.ax.aIdx[i].ix = jj; 002187 i++; 002188 } 002189 assert( i==nIdx ); 002190 } 002191 } 002192 002193 /* Determine if it is possible that triggers (either explicitly coded 002194 ** triggers or FK resolution actions) might run as a result of deletes 002195 ** that happen when OE_Replace conflict resolution occurs. (Call these 002196 ** "replace triggers".) If any replace triggers run, we will need to 002197 ** recheck all of the uniqueness constraints after they have all run. 002198 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 002199 ** 002200 ** If replace triggers are a possibility, then 002201 ** 002202 ** (1) Allocate register regTrigCnt and initialize it to zero. 002203 ** That register will count the number of replace triggers that 002204 ** fire. Constraint recheck only occurs if the number is positive. 002205 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 002206 ** (3) Initialize addrRecheck and lblRecheckOk 002207 ** 002208 ** The uniqueness rechecking code will create a series of tests to run 002209 ** in a second pass. The addrRecheck and lblRecheckOk variables are 002210 ** used to link together these tests which are separated from each other 002211 ** in the generate bytecode. 002212 */ 002213 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 002214 /* There are not DELETE triggers nor FK constraints. No constraint 002215 ** rechecks are needed. */ 002216 pTrigger = 0; 002217 regTrigCnt = 0; 002218 }else{ 002219 if( db->flags&SQLITE_RecTriggers ){ 002220 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 002221 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 002222 }else{ 002223 pTrigger = 0; 002224 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 002225 } 002226 if( regTrigCnt ){ 002227 /* Replace triggers might exist. Allocate the counter and 002228 ** initialize it to zero. */ 002229 regTrigCnt = ++pParse->nMem; 002230 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 002231 VdbeComment((v, "trigger count")); 002232 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002233 addrRecheck = lblRecheckOk; 002234 } 002235 } 002236 002237 /* If rowid is changing, make sure the new rowid does not previously 002238 ** exist in the table. 002239 */ 002240 if( pkChng && pPk==0 ){ 002241 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 002242 002243 /* Figure out what action to take in case of a rowid collision */ 002244 onError = pTab->keyConf; 002245 if( overrideError!=OE_Default ){ 002246 onError = overrideError; 002247 }else if( onError==OE_Default ){ 002248 onError = OE_Abort; 002249 } 002250 002251 /* figure out whether or not upsert applies in this case */ 002252 if( pUpsert ){ 002253 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 002254 if( pUpsertClause!=0 ){ 002255 if( pUpsertClause->isDoUpdate==0 ){ 002256 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002257 }else{ 002258 onError = OE_Update; /* DO UPDATE */ 002259 } 002260 } 002261 if( pUpsertClause!=pUpsert ){ 002262 /* The first ON CONFLICT clause has a conflict target other than 002263 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 002264 ** and then come back here and deal with the IPK afterwards */ 002265 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 002266 } 002267 } 002268 002269 /* If the response to a rowid conflict is REPLACE but the response 002270 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 002271 ** to defer the running of the rowid conflict checking until after 002272 ** the UNIQUE constraints have run. 002273 */ 002274 if( onError==OE_Replace /* IPK rule is REPLACE */ 002275 && onError!=overrideError /* Rules for other constraints are different */ 002276 && pTab->pIndex /* There exist other constraints */ 002277 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 002278 ){ 002279 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 002280 VdbeComment((v, "defer IPK REPLACE until last")); 002281 } 002282 002283 if( isUpdate ){ 002284 /* pkChng!=0 does not mean that the rowid has changed, only that 002285 ** it might have changed. Skip the conflict logic below if the rowid 002286 ** is unchanged. */ 002287 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 002288 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002289 VdbeCoverage(v); 002290 } 002291 002292 /* Check to see if the new rowid already exists in the table. Skip 002293 ** the following conflict logic if it does not. */ 002294 VdbeNoopComment((v, "uniqueness check for ROWID")); 002295 sqlite3VdbeVerifyAbortable(v, onError); 002296 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 002297 VdbeCoverage(v); 002298 002299 switch( onError ){ 002300 default: { 002301 onError = OE_Abort; 002302 /* no break */ deliberate_fall_through 002303 } 002304 case OE_Rollback: 002305 case OE_Abort: 002306 case OE_Fail: { 002307 testcase( onError==OE_Rollback ); 002308 testcase( onError==OE_Abort ); 002309 testcase( onError==OE_Fail ); 002310 sqlite3RowidConstraint(pParse, onError, pTab); 002311 break; 002312 } 002313 case OE_Replace: { 002314 /* If there are DELETE triggers on this table and the 002315 ** recursive-triggers flag is set, call GenerateRowDelete() to 002316 ** remove the conflicting row from the table. This will fire 002317 ** the triggers and remove both the table and index b-tree entries. 002318 ** 002319 ** Otherwise, if there are no triggers or the recursive-triggers 002320 ** flag is not set, but the table has one or more indexes, call 002321 ** GenerateRowIndexDelete(). This removes the index b-tree entries 002322 ** only. The table b-tree entry will be replaced by the new entry 002323 ** when it is inserted. 002324 ** 002325 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 002326 ** also invoke MultiWrite() to indicate that this VDBE may require 002327 ** statement rollback (if the statement is aborted after the delete 002328 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 002329 ** but being more selective here allows statements like: 002330 ** 002331 ** REPLACE INTO t(rowid) VALUES($newrowid) 002332 ** 002333 ** to run without a statement journal if there are no indexes on the 002334 ** table. 002335 */ 002336 if( regTrigCnt ){ 002337 sqlite3MultiWrite(pParse); 002338 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002339 regNewData, 1, 0, OE_Replace, 1, -1); 002340 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002341 nReplaceTrig++; 002342 }else{ 002343 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002344 assert( HasRowid(pTab) ); 002345 /* This OP_Delete opcode fires the pre-update-hook only. It does 002346 ** not modify the b-tree. It is more efficient to let the coming 002347 ** OP_Insert replace the existing entry than it is to delete the 002348 ** existing entry and then insert a new one. */ 002349 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 002350 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002351 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002352 if( pTab->pIndex ){ 002353 sqlite3MultiWrite(pParse); 002354 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 002355 } 002356 } 002357 seenReplace = 1; 002358 break; 002359 } 002360 #ifndef SQLITE_OMIT_UPSERT 002361 case OE_Update: { 002362 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 002363 /* no break */ deliberate_fall_through 002364 } 002365 #endif 002366 case OE_Ignore: { 002367 testcase( onError==OE_Ignore ); 002368 sqlite3VdbeGoto(v, ignoreDest); 002369 break; 002370 } 002371 } 002372 sqlite3VdbeResolveLabel(v, addrRowidOk); 002373 if( pUpsert && pUpsertClause!=pUpsert ){ 002374 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 002375 }else if( ipkTop ){ 002376 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 002377 sqlite3VdbeJumpHere(v, ipkTop-1); 002378 } 002379 } 002380 002381 /* Test all UNIQUE constraints by creating entries for each UNIQUE 002382 ** index and making sure that duplicate entries do not already exist. 002383 ** Compute the revised record entries for indices as we go. 002384 ** 002385 ** This loop also handles the case of the PRIMARY KEY index for a 002386 ** WITHOUT ROWID table. 002387 */ 002388 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 002389 pIdx; 002390 pIdx = indexIteratorNext(&sIdxIter, &ix) 002391 ){ 002392 int regIdx; /* Range of registers holding content for pIdx */ 002393 int regR; /* Range of registers holding conflicting PK */ 002394 int iThisCur; /* Cursor for this UNIQUE index */ 002395 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 002396 int addrConflictCk; /* First opcode in the conflict check logic */ 002397 002398 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 002399 if( pUpsert ){ 002400 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 002401 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 002402 sqlite3VdbeJumpHere(v, upsertIpkDelay); 002403 } 002404 } 002405 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 002406 if( bAffinityDone==0 ){ 002407 sqlite3TableAffinity(v, pTab, regNewData+1); 002408 bAffinityDone = 1; 002409 } 002410 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 002411 iThisCur = iIdxCur+ix; 002412 002413 002414 /* Skip partial indices for which the WHERE clause is not true */ 002415 if( pIdx->pPartIdxWhere ){ 002416 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 002417 pParse->iSelfTab = -(regNewData+1); 002418 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 002419 SQLITE_JUMPIFNULL); 002420 pParse->iSelfTab = 0; 002421 } 002422 002423 /* Create a record for this index entry as it should appear after 002424 ** the insert or update. Store that record in the aRegIdx[ix] register 002425 */ 002426 regIdx = aRegIdx[ix]+1; 002427 for(i=0; i<pIdx->nColumn; i++){ 002428 int iField = pIdx->aiColumn[i]; 002429 int x; 002430 if( iField==XN_EXPR ){ 002431 pParse->iSelfTab = -(regNewData+1); 002432 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 002433 pParse->iSelfTab = 0; 002434 VdbeComment((v, "%s column %d", pIdx->zName, i)); 002435 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 002436 x = regNewData; 002437 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 002438 VdbeComment((v, "rowid")); 002439 }else{ 002440 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 002441 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 002442 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 002443 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 002444 } 002445 } 002446 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 002447 VdbeComment((v, "for %s", pIdx->zName)); 002448 #ifdef SQLITE_ENABLE_NULL_TRIM 002449 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 002450 sqlite3SetMakeRecordP5(v, pIdx->pTable); 002451 } 002452 #endif 002453 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 002454 002455 /* In an UPDATE operation, if this index is the PRIMARY KEY index 002456 ** of a WITHOUT ROWID table and there has been no change the 002457 ** primary key, then no collision is possible. The collision detection 002458 ** logic below can all be skipped. */ 002459 if( isUpdate && pPk==pIdx && pkChng==0 ){ 002460 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002461 continue; 002462 } 002463 002464 /* Find out what action to take in case there is a uniqueness conflict */ 002465 onError = pIdx->onError; 002466 if( onError==OE_None ){ 002467 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002468 continue; /* pIdx is not a UNIQUE index */ 002469 } 002470 if( overrideError!=OE_Default ){ 002471 onError = overrideError; 002472 }else if( onError==OE_Default ){ 002473 onError = OE_Abort; 002474 } 002475 002476 /* Figure out if the upsert clause applies to this index */ 002477 if( pUpsertClause ){ 002478 if( pUpsertClause->isDoUpdate==0 ){ 002479 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002480 }else{ 002481 onError = OE_Update; /* DO UPDATE */ 002482 } 002483 } 002484 002485 /* Collision detection may be omitted if all of the following are true: 002486 ** (1) The conflict resolution algorithm is REPLACE 002487 ** (2) The table is a WITHOUT ROWID table 002488 ** (3) There are no secondary indexes on the table 002489 ** (4) No delete triggers need to be fired if there is a conflict 002490 ** (5) No FK constraint counters need to be updated if a conflict occurs. 002491 ** 002492 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 002493 ** must be explicitly deleted in order to ensure any pre-update hook 002494 ** is invoked. */ 002495 assert( IsOrdinaryTable(pTab) ); 002496 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 002497 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 002498 && pPk==pIdx /* Condition 2 */ 002499 && onError==OE_Replace /* Condition 1 */ 002500 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 002501 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 002502 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 002503 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 002504 ){ 002505 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002506 continue; 002507 } 002508 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 002509 002510 /* Check to see if the new index entry will be unique */ 002511 sqlite3VdbeVerifyAbortable(v, onError); 002512 addrConflictCk = 002513 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 002514 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 002515 002516 /* Generate code to handle collisions */ 002517 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 002518 if( isUpdate || onError==OE_Replace ){ 002519 if( HasRowid(pTab) ){ 002520 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 002521 /* Conflict only if the rowid of the existing index entry 002522 ** is different from old-rowid */ 002523 if( isUpdate ){ 002524 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 002525 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002526 VdbeCoverage(v); 002527 } 002528 }else{ 002529 int x; 002530 /* Extract the PRIMARY KEY from the end of the index entry and 002531 ** store it in registers regR..regR+nPk-1 */ 002532 if( pIdx!=pPk ){ 002533 for(i=0; i<pPk->nKeyCol; i++){ 002534 assert( pPk->aiColumn[i]>=0 ); 002535 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 002536 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 002537 VdbeComment((v, "%s.%s", pTab->zName, 002538 pTab->aCol[pPk->aiColumn[i]].zCnName)); 002539 } 002540 } 002541 if( isUpdate ){ 002542 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 002543 ** table, only conflict if the new PRIMARY KEY values are actually 002544 ** different from the old. See TH3 withoutrowid04.test. 002545 ** 002546 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 002547 ** of the matched index row are different from the original PRIMARY 002548 ** KEY values of this row before the update. */ 002549 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 002550 int op = OP_Ne; 002551 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 002552 002553 for(i=0; i<pPk->nKeyCol; i++){ 002554 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 002555 x = pPk->aiColumn[i]; 002556 assert( x>=0 ); 002557 if( i==(pPk->nKeyCol-1) ){ 002558 addrJump = addrUniqueOk; 002559 op = OP_Eq; 002560 } 002561 x = sqlite3TableColumnToStorage(pTab, x); 002562 sqlite3VdbeAddOp4(v, op, 002563 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 002564 ); 002565 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002566 VdbeCoverageIf(v, op==OP_Eq); 002567 VdbeCoverageIf(v, op==OP_Ne); 002568 } 002569 } 002570 } 002571 } 002572 002573 /* Generate code that executes if the new index entry is not unique */ 002574 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002575 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 002576 switch( onError ){ 002577 case OE_Rollback: 002578 case OE_Abort: 002579 case OE_Fail: { 002580 testcase( onError==OE_Rollback ); 002581 testcase( onError==OE_Abort ); 002582 testcase( onError==OE_Fail ); 002583 sqlite3UniqueConstraint(pParse, onError, pIdx); 002584 break; 002585 } 002586 #ifndef SQLITE_OMIT_UPSERT 002587 case OE_Update: { 002588 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 002589 /* no break */ deliberate_fall_through 002590 } 002591 #endif 002592 case OE_Ignore: { 002593 testcase( onError==OE_Ignore ); 002594 sqlite3VdbeGoto(v, ignoreDest); 002595 break; 002596 } 002597 default: { 002598 int nConflictCk; /* Number of opcodes in conflict check logic */ 002599 002600 assert( onError==OE_Replace ); 002601 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 002602 assert( nConflictCk>0 || db->mallocFailed ); 002603 testcase( nConflictCk<=0 ); 002604 testcase( nConflictCk>1 ); 002605 if( regTrigCnt ){ 002606 sqlite3MultiWrite(pParse); 002607 nReplaceTrig++; 002608 } 002609 if( pTrigger && isUpdate ){ 002610 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 002611 } 002612 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002613 regR, nPkField, 0, OE_Replace, 002614 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 002615 if( pTrigger && isUpdate ){ 002616 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 002617 } 002618 if( regTrigCnt ){ 002619 int addrBypass; /* Jump destination to bypass recheck logic */ 002620 002621 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002622 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 002623 VdbeComment((v, "bypass recheck")); 002624 002625 /* Here we insert code that will be invoked after all constraint 002626 ** checks have run, if and only if one or more replace triggers 002627 ** fired. */ 002628 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002629 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002630 if( pIdx->pPartIdxWhere ){ 002631 /* Bypass the recheck if this partial index is not defined 002632 ** for the current row */ 002633 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 002634 VdbeCoverage(v); 002635 } 002636 /* Copy the constraint check code from above, except change 002637 ** the constraint-ok jump destination to be the address of 002638 ** the next retest block */ 002639 while( nConflictCk>0 ){ 002640 VdbeOp x; /* Conflict check opcode to copy */ 002641 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 002642 ** Hence, make a complete copy of the opcode, rather than using 002643 ** a pointer to the opcode. */ 002644 x = *sqlite3VdbeGetOp(v, addrConflictCk); 002645 if( x.opcode!=OP_IdxRowid ){ 002646 int p2; /* New P2 value for copied conflict check opcode */ 002647 const char *zP4; 002648 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 002649 p2 = lblRecheckOk; 002650 }else{ 002651 p2 = x.p2; 002652 } 002653 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 002654 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 002655 sqlite3VdbeChangeP5(v, x.p5); 002656 VdbeCoverageIf(v, p2!=x.p2); 002657 } 002658 nConflictCk--; 002659 addrConflictCk++; 002660 } 002661 /* If the retest fails, issue an abort */ 002662 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 002663 002664 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 002665 } 002666 seenReplace = 1; 002667 break; 002668 } 002669 } 002670 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002671 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 002672 if( pUpsertClause 002673 && upsertIpkReturn 002674 && sqlite3UpsertNextIsIPK(pUpsertClause) 002675 ){ 002676 sqlite3VdbeGoto(v, upsertIpkDelay+1); 002677 sqlite3VdbeJumpHere(v, upsertIpkReturn); 002678 upsertIpkReturn = 0; 002679 } 002680 } 002681 002682 /* If the IPK constraint is a REPLACE, run it last */ 002683 if( ipkTop ){ 002684 sqlite3VdbeGoto(v, ipkTop); 002685 VdbeComment((v, "Do IPK REPLACE")); 002686 assert( ipkBottom>0 ); 002687 sqlite3VdbeJumpHere(v, ipkBottom); 002688 } 002689 002690 /* Recheck all uniqueness constraints after replace triggers have run */ 002691 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 002692 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 002693 if( nReplaceTrig ){ 002694 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 002695 if( !pPk ){ 002696 if( isUpdate ){ 002697 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 002698 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002699 VdbeCoverage(v); 002700 } 002701 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 002702 VdbeCoverage(v); 002703 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 002704 }else{ 002705 sqlite3VdbeGoto(v, addrRecheck); 002706 } 002707 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002708 } 002709 002710 /* Generate the table record */ 002711 if( HasRowid(pTab) ){ 002712 int regRec = aRegIdx[ix]; 002713 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 002714 sqlite3SetMakeRecordP5(v, pTab); 002715 if( !bAffinityDone ){ 002716 sqlite3TableAffinity(v, pTab, 0); 002717 } 002718 } 002719 002720 *pbMayReplace = seenReplace; 002721 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 002722 } 002723 002724 #ifdef SQLITE_ENABLE_NULL_TRIM 002725 /* 002726 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 002727 ** to be the number of columns in table pTab that must not be NULL-trimmed. 002728 ** 002729 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 002730 */ 002731 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 002732 u16 i; 002733 002734 /* Records with omitted columns are only allowed for schema format 002735 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 002736 if( pTab->pSchema->file_format<2 ) return; 002737 002738 for(i=pTab->nCol-1; i>0; i--){ 002739 if( pTab->aCol[i].iDflt!=0 ) break; 002740 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 002741 } 002742 sqlite3VdbeChangeP5(v, i+1); 002743 } 002744 #endif 002745 002746 /* 002747 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 002748 ** number is iCur, and register regData contains the new record for the 002749 ** PK index. This function adds code to invoke the pre-update hook, 002750 ** if one is registered. 002751 */ 002752 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002753 static void codeWithoutRowidPreupdate( 002754 Parse *pParse, /* Parse context */ 002755 Table *pTab, /* Table being updated */ 002756 int iCur, /* Cursor number for table */ 002757 int regData /* Data containing new record */ 002758 ){ 002759 Vdbe *v = pParse->pVdbe; 002760 int r = sqlite3GetTempReg(pParse); 002761 assert( !HasRowid(pTab) ); 002762 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 002763 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 002764 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 002765 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 002766 sqlite3ReleaseTempReg(pParse, r); 002767 } 002768 #else 002769 # define codeWithoutRowidPreupdate(a,b,c,d) 002770 #endif 002771 002772 /* 002773 ** This routine generates code to finish the INSERT or UPDATE operation 002774 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 002775 ** A consecutive range of registers starting at regNewData contains the 002776 ** rowid and the content to be inserted. 002777 ** 002778 ** The arguments to this routine should be the same as the first six 002779 ** arguments to sqlite3GenerateConstraintChecks. 002780 */ 002781 void sqlite3CompleteInsertion( 002782 Parse *pParse, /* The parser context */ 002783 Table *pTab, /* the table into which we are inserting */ 002784 int iDataCur, /* Cursor of the canonical data source */ 002785 int iIdxCur, /* First index cursor */ 002786 int regNewData, /* Range of content */ 002787 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 002788 int update_flags, /* True for UPDATE, False for INSERT */ 002789 int appendBias, /* True if this is likely to be an append */ 002790 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 002791 ){ 002792 Vdbe *v; /* Prepared statements under construction */ 002793 Index *pIdx; /* An index being inserted or updated */ 002794 u8 pik_flags; /* flag values passed to the btree insert */ 002795 int i; /* Loop counter */ 002796 002797 assert( update_flags==0 002798 || update_flags==OPFLAG_ISUPDATE 002799 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 002800 ); 002801 002802 v = pParse->pVdbe; 002803 assert( v!=0 ); 002804 assert( !IsView(pTab) ); /* This table is not a VIEW */ 002805 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002806 /* All REPLACE indexes are at the end of the list */ 002807 assert( pIdx->onError!=OE_Replace 002808 || pIdx->pNext==0 002809 || pIdx->pNext->onError==OE_Replace ); 002810 if( aRegIdx[i]==0 ) continue; 002811 if( pIdx->pPartIdxWhere ){ 002812 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 002813 VdbeCoverage(v); 002814 } 002815 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 002816 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002817 pik_flags |= OPFLAG_NCHANGE; 002818 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 002819 if( update_flags==0 ){ 002820 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 002821 } 002822 } 002823 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 002824 aRegIdx[i]+1, 002825 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 002826 sqlite3VdbeChangeP5(v, pik_flags); 002827 } 002828 if( !HasRowid(pTab) ) return; 002829 if( pParse->nested ){ 002830 pik_flags = 0; 002831 }else{ 002832 pik_flags = OPFLAG_NCHANGE; 002833 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 002834 } 002835 if( appendBias ){ 002836 pik_flags |= OPFLAG_APPEND; 002837 } 002838 if( useSeekResult ){ 002839 pik_flags |= OPFLAG_USESEEKRESULT; 002840 } 002841 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 002842 if( !pParse->nested ){ 002843 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002844 } 002845 sqlite3VdbeChangeP5(v, pik_flags); 002846 } 002847 002848 /* 002849 ** Allocate cursors for the pTab table and all its indices and generate 002850 ** code to open and initialized those cursors. 002851 ** 002852 ** The cursor for the object that contains the complete data (normally 002853 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 002854 ** ROWID table) is returned in *piDataCur. The first index cursor is 002855 ** returned in *piIdxCur. The number of indices is returned. 002856 ** 002857 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 002858 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 002859 ** If iBase is negative, then allocate the next available cursor. 002860 ** 002861 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 002862 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 002863 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 002864 ** pTab->pIndex list. 002865 ** 002866 ** If pTab is a virtual table, then this routine is a no-op and the 002867 ** *piDataCur and *piIdxCur values are left uninitialized. 002868 */ 002869 int sqlite3OpenTableAndIndices( 002870 Parse *pParse, /* Parsing context */ 002871 Table *pTab, /* Table to be opened */ 002872 int op, /* OP_OpenRead or OP_OpenWrite */ 002873 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 002874 int iBase, /* Use this for the table cursor, if there is one */ 002875 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 002876 int *piDataCur, /* Write the database source cursor number here */ 002877 int *piIdxCur /* Write the first index cursor number here */ 002878 ){ 002879 int i; 002880 int iDb; 002881 int iDataCur; 002882 Index *pIdx; 002883 Vdbe *v; 002884 002885 assert( op==OP_OpenRead || op==OP_OpenWrite ); 002886 assert( op==OP_OpenWrite || p5==0 ); 002887 assert( piDataCur!=0 ); 002888 assert( piIdxCur!=0 ); 002889 if( IsVirtual(pTab) ){ 002890 /* This routine is a no-op for virtual tables. Leave the output 002891 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 002892 ** for improved error detection. */ 002893 *piDataCur = *piIdxCur = -999; 002894 return 0; 002895 } 002896 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 002897 v = pParse->pVdbe; 002898 assert( v!=0 ); 002899 if( iBase<0 ) iBase = pParse->nTab; 002900 iDataCur = iBase++; 002901 *piDataCur = iDataCur; 002902 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 002903 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 002904 }else if( pParse->db->noSharedCache==0 ){ 002905 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 002906 } 002907 *piIdxCur = iBase; 002908 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002909 int iIdxCur = iBase++; 002910 assert( pIdx->pSchema==pTab->pSchema ); 002911 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002912 *piDataCur = iIdxCur; 002913 p5 = 0; 002914 } 002915 if( aToOpen==0 || aToOpen[i+1] ){ 002916 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 002917 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 002918 sqlite3VdbeChangeP5(v, p5); 002919 VdbeComment((v, "%s", pIdx->zName)); 002920 } 002921 } 002922 if( iBase>pParse->nTab ) pParse->nTab = iBase; 002923 return i; 002924 } 002925 002926 002927 #ifdef SQLITE_TEST 002928 /* 002929 ** The following global variable is incremented whenever the 002930 ** transfer optimization is used. This is used for testing 002931 ** purposes only - to make sure the transfer optimization really 002932 ** is happening when it is supposed to. 002933 */ 002934 int sqlite3_xferopt_count; 002935 #endif /* SQLITE_TEST */ 002936 002937 002938 #ifndef SQLITE_OMIT_XFER_OPT 002939 /* 002940 ** Check to see if index pSrc is compatible as a source of data 002941 ** for index pDest in an insert transfer optimization. The rules 002942 ** for a compatible index: 002943 ** 002944 ** * The index is over the same set of columns 002945 ** * The same DESC and ASC markings occurs on all columns 002946 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 002947 ** * The same collating sequence on each column 002948 ** * The index has the exact same WHERE clause 002949 */ 002950 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 002951 int i; 002952 assert( pDest && pSrc ); 002953 assert( pDest->pTable!=pSrc->pTable ); 002954 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 002955 return 0; /* Different number of columns */ 002956 } 002957 if( pDest->onError!=pSrc->onError ){ 002958 return 0; /* Different conflict resolution strategies */ 002959 } 002960 for(i=0; i<pSrc->nKeyCol; i++){ 002961 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 002962 return 0; /* Different columns indexed */ 002963 } 002964 if( pSrc->aiColumn[i]==XN_EXPR ){ 002965 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 002966 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 002967 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 002968 return 0; /* Different expressions in the index */ 002969 } 002970 } 002971 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 002972 return 0; /* Different sort orders */ 002973 } 002974 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 002975 return 0; /* Different collating sequences */ 002976 } 002977 } 002978 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 002979 return 0; /* Different WHERE clauses */ 002980 } 002981 002982 /* If no test above fails then the indices must be compatible */ 002983 return 1; 002984 } 002985 002986 /* 002987 ** Attempt the transfer optimization on INSERTs of the form 002988 ** 002989 ** INSERT INTO tab1 SELECT * FROM tab2; 002990 ** 002991 ** The xfer optimization transfers raw records from tab2 over to tab1. 002992 ** Columns are not decoded and reassembled, which greatly improves 002993 ** performance. Raw index records are transferred in the same way. 002994 ** 002995 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 002996 ** There are lots of rules for determining compatibility - see comments 002997 ** embedded in the code for details. 002998 ** 002999 ** This routine returns TRUE if the optimization is guaranteed to be used. 003000 ** Sometimes the xfer optimization will only work if the destination table 003001 ** is empty - a factor that can only be determined at run-time. In that 003002 ** case, this routine generates code for the xfer optimization but also 003003 ** does a test to see if the destination table is empty and jumps over the 003004 ** xfer optimization code if the test fails. In that case, this routine 003005 ** returns FALSE so that the caller will know to go ahead and generate 003006 ** an unoptimized transfer. This routine also returns FALSE if there 003007 ** is no chance that the xfer optimization can be applied. 003008 ** 003009 ** This optimization is particularly useful at making VACUUM run faster. 003010 */ 003011 static int xferOptimization( 003012 Parse *pParse, /* Parser context */ 003013 Table *pDest, /* The table we are inserting into */ 003014 Select *pSelect, /* A SELECT statement to use as the data source */ 003015 int onError, /* How to handle constraint errors */ 003016 int iDbDest /* The database of pDest */ 003017 ){ 003018 sqlite3 *db = pParse->db; 003019 ExprList *pEList; /* The result set of the SELECT */ 003020 Table *pSrc; /* The table in the FROM clause of SELECT */ 003021 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 003022 SrcItem *pItem; /* An element of pSelect->pSrc */ 003023 int i; /* Loop counter */ 003024 int iDbSrc; /* The database of pSrc */ 003025 int iSrc, iDest; /* Cursors from source and destination */ 003026 int addr1, addr2; /* Loop addresses */ 003027 int emptyDestTest = 0; /* Address of test for empty pDest */ 003028 int emptySrcTest = 0; /* Address of test for empty pSrc */ 003029 Vdbe *v; /* The VDBE we are building */ 003030 int regAutoinc; /* Memory register used by AUTOINC */ 003031 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 003032 int regData, regRowid; /* Registers holding data and rowid */ 003033 003034 assert( pSelect!=0 ); 003035 if( pParse->pWith || pSelect->pWith ){ 003036 /* Do not attempt to process this query if there are an WITH clauses 003037 ** attached to it. Proceeding may generate a false "no such table: xxx" 003038 ** error if pSelect reads from a CTE named "xxx". */ 003039 return 0; 003040 } 003041 #ifndef SQLITE_OMIT_VIRTUALTABLE 003042 if( IsVirtual(pDest) ){ 003043 return 0; /* tab1 must not be a virtual table */ 003044 } 003045 #endif 003046 if( onError==OE_Default ){ 003047 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 003048 if( onError==OE_Default ) onError = OE_Abort; 003049 } 003050 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 003051 if( pSelect->pSrc->nSrc!=1 ){ 003052 return 0; /* FROM clause must have exactly one term */ 003053 } 003054 if( pSelect->pSrc->a[0].fg.isSubquery ){ 003055 return 0; /* FROM clause cannot contain a subquery */ 003056 } 003057 if( pSelect->pWhere ){ 003058 return 0; /* SELECT may not have a WHERE clause */ 003059 } 003060 if( pSelect->pOrderBy ){ 003061 return 0; /* SELECT may not have an ORDER BY clause */ 003062 } 003063 /* Do not need to test for a HAVING clause. If HAVING is present but 003064 ** there is no ORDER BY, we will get an error. */ 003065 if( pSelect->pGroupBy ){ 003066 return 0; /* SELECT may not have a GROUP BY clause */ 003067 } 003068 if( pSelect->pLimit ){ 003069 return 0; /* SELECT may not have a LIMIT clause */ 003070 } 003071 if( pSelect->pPrior ){ 003072 return 0; /* SELECT may not be a compound query */ 003073 } 003074 if( pSelect->selFlags & SF_Distinct ){ 003075 return 0; /* SELECT may not be DISTINCT */ 003076 } 003077 pEList = pSelect->pEList; 003078 assert( pEList!=0 ); 003079 if( pEList->nExpr!=1 ){ 003080 return 0; /* The result set must have exactly one column */ 003081 } 003082 assert( pEList->a[0].pExpr ); 003083 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 003084 return 0; /* The result set must be the special operator "*" */ 003085 } 003086 003087 /* At this point we have established that the statement is of the 003088 ** correct syntactic form to participate in this optimization. Now 003089 ** we have to check the semantics. 003090 */ 003091 pItem = pSelect->pSrc->a; 003092 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 003093 if( pSrc==0 ){ 003094 return 0; /* FROM clause does not contain a real table */ 003095 } 003096 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 003097 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 003098 return 0; /* tab1 and tab2 may not be the same table */ 003099 } 003100 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 003101 return 0; /* source and destination must both be WITHOUT ROWID or not */ 003102 } 003103 if( !IsOrdinaryTable(pSrc) ){ 003104 return 0; /* tab2 may not be a view or virtual table */ 003105 } 003106 if( pDest->nCol!=pSrc->nCol ){ 003107 return 0; /* Number of columns must be the same in tab1 and tab2 */ 003108 } 003109 if( pDest->iPKey!=pSrc->iPKey ){ 003110 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 003111 } 003112 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 003113 return 0; /* Cannot feed from a non-strict into a strict table */ 003114 } 003115 for(i=0; i<pDest->nCol; i++){ 003116 Column *pDestCol = &pDest->aCol[i]; 003117 Column *pSrcCol = &pSrc->aCol[i]; 003118 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 003119 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003120 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 003121 ){ 003122 return 0; /* Neither table may have __hidden__ columns */ 003123 } 003124 #endif 003125 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 003126 /* Even if tables t1 and t2 have identical schemas, if they contain 003127 ** generated columns, then this statement is semantically incorrect: 003128 ** 003129 ** INSERT INTO t2 SELECT * FROM t1; 003130 ** 003131 ** The reason is that generated column values are returned by the 003132 ** the SELECT statement on the right but the INSERT statement on the 003133 ** left wants them to be omitted. 003134 ** 003135 ** Nevertheless, this is a useful notational shorthand to tell SQLite 003136 ** to do a bulk transfer all of the content from t1 over to t2. 003137 ** 003138 ** We could, in theory, disable this (except for internal use by the 003139 ** VACUUM command where it is actually needed). But why do that? It 003140 ** seems harmless enough, and provides a useful service. 003141 */ 003142 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 003143 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 003144 return 0; /* Both columns have the same generated-column type */ 003145 } 003146 /* But the transfer is only allowed if both the source and destination 003147 ** tables have the exact same expressions for generated columns. 003148 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 003149 */ 003150 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 003151 if( sqlite3ExprCompare(0, 003152 sqlite3ColumnExpr(pSrc, pSrcCol), 003153 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 003154 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 003155 testcase( pDestCol->colFlags & COLFLAG_STORED ); 003156 return 0; /* Different generator expressions */ 003157 } 003158 } 003159 #endif 003160 if( pDestCol->affinity!=pSrcCol->affinity ){ 003161 return 0; /* Affinity must be the same on all columns */ 003162 } 003163 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 003164 sqlite3ColumnColl(pSrcCol))!=0 ){ 003165 return 0; /* Collating sequence must be the same on all columns */ 003166 } 003167 if( pDestCol->notNull && !pSrcCol->notNull ){ 003168 return 0; /* tab2 must be NOT NULL if tab1 is */ 003169 } 003170 /* Default values for second and subsequent columns need to match. */ 003171 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 003172 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 003173 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 003174 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 003175 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 003176 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 003177 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 003178 if( (pDestExpr==0)!=(pSrcExpr==0) 003179 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 003180 pSrcExpr->u.zToken)!=0) 003181 ){ 003182 return 0; /* Default values must be the same for all columns */ 003183 } 003184 } 003185 } 003186 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003187 if( IsUniqueIndex(pDestIdx) ){ 003188 destHasUniqueIdx = 1; 003189 } 003190 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 003191 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003192 } 003193 if( pSrcIdx==0 ){ 003194 return 0; /* pDestIdx has no corresponding index in pSrc */ 003195 } 003196 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 003197 && sqlite3FaultSim(411)==SQLITE_OK ){ 003198 /* The sqlite3FaultSim() call allows this corruption test to be 003199 ** bypassed during testing, in order to exercise other corruption tests 003200 ** further downstream. */ 003201 return 0; /* Corrupt schema - two indexes on the same btree */ 003202 } 003203 } 003204 #ifndef SQLITE_OMIT_CHECK 003205 if( pDest->pCheck 003206 && (db->mDbFlags & DBFLAG_Vacuum)==0 003207 && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) 003208 ){ 003209 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 003210 } 003211 #endif 003212 #ifndef SQLITE_OMIT_FOREIGN_KEY 003213 /* Disallow the transfer optimization if the destination table contains 003214 ** any foreign key constraints. This is more restrictive than necessary. 003215 ** But the main beneficiary of the transfer optimization is the VACUUM 003216 ** command, and the VACUUM command disables foreign key constraints. So 003217 ** the extra complication to make this rule less restrictive is probably 003218 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 003219 */ 003220 assert( IsOrdinaryTable(pDest) ); 003221 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 003222 return 0; 003223 } 003224 #endif 003225 if( (db->flags & SQLITE_CountRows)!=0 ){ 003226 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 003227 } 003228 003229 /* If we get this far, it means that the xfer optimization is at 003230 ** least a possibility, though it might only work if the destination 003231 ** table (tab1) is initially empty. 003232 */ 003233 #ifdef SQLITE_TEST 003234 sqlite3_xferopt_count++; 003235 #endif 003236 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 003237 v = sqlite3GetVdbe(pParse); 003238 sqlite3CodeVerifySchema(pParse, iDbSrc); 003239 iSrc = pParse->nTab++; 003240 iDest = pParse->nTab++; 003241 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 003242 regData = sqlite3GetTempReg(pParse); 003243 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 003244 regRowid = sqlite3GetTempReg(pParse); 003245 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 003246 assert( HasRowid(pDest) || destHasUniqueIdx ); 003247 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 003248 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 003249 || destHasUniqueIdx /* (2) */ 003250 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 003251 )){ 003252 /* In some circumstances, we are able to run the xfer optimization 003253 ** only if the destination table is initially empty. Unless the 003254 ** DBFLAG_Vacuum flag is set, this block generates code to make 003255 ** that determination. If DBFLAG_Vacuum is set, then the destination 003256 ** table is always empty. 003257 ** 003258 ** Conditions under which the destination must be empty: 003259 ** 003260 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 003261 ** (If the destination is not initially empty, the rowid fields 003262 ** of index entries might need to change.) 003263 ** 003264 ** (2) The destination has a unique index. (The xfer optimization 003265 ** is unable to test uniqueness.) 003266 ** 003267 ** (3) onError is something other than OE_Abort and OE_Rollback. 003268 */ 003269 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 003270 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 003271 sqlite3VdbeJumpHere(v, addr1); 003272 } 003273 if( HasRowid(pSrc) ){ 003274 u8 insFlags; 003275 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 003276 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003277 if( pDest->iPKey>=0 ){ 003278 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003279 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003280 sqlite3VdbeVerifyAbortable(v, onError); 003281 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 003282 VdbeCoverage(v); 003283 sqlite3RowidConstraint(pParse, onError, pDest); 003284 sqlite3VdbeJumpHere(v, addr2); 003285 } 003286 autoIncStep(pParse, regAutoinc, regRowid); 003287 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 003288 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 003289 }else{ 003290 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003291 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 003292 } 003293 003294 if( db->mDbFlags & DBFLAG_Vacuum ){ 003295 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003296 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003297 }else{ 003298 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 003299 } 003300 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 003301 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003302 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003303 insFlags &= ~OPFLAG_PREFORMAT; 003304 }else 003305 #endif 003306 { 003307 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 003308 } 003309 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 003310 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003311 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 003312 } 003313 sqlite3VdbeChangeP5(v, insFlags); 003314 003315 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 003316 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003317 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003318 }else{ 003319 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 003320 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 003321 } 003322 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003323 u8 idxInsFlags = 0; 003324 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 003325 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003326 } 003327 assert( pSrcIdx ); 003328 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 003329 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 003330 VdbeComment((v, "%s", pSrcIdx->zName)); 003331 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 003332 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 003333 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 003334 VdbeComment((v, "%s", pDestIdx->zName)); 003335 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003336 if( db->mDbFlags & DBFLAG_Vacuum ){ 003337 /* This INSERT command is part of a VACUUM operation, which guarantees 003338 ** that the destination table is empty. If all indexed columns use 003339 ** collation sequence BINARY, then it can also be assumed that the 003340 ** index will be populated by inserting keys in strictly sorted 003341 ** order. In this case, instead of seeking within the b-tree as part 003342 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 003343 ** OP_IdxInsert to seek to the point within the b-tree where each key 003344 ** should be inserted. This is faster. 003345 ** 003346 ** If any of the indexed columns use a collation sequence other than 003347 ** BINARY, this optimization is disabled. This is because the user 003348 ** might change the definition of a collation sequence and then run 003349 ** a VACUUM command. In that case keys may not be written in strictly 003350 ** sorted order. */ 003351 for(i=0; i<pSrcIdx->nColumn; i++){ 003352 const char *zColl = pSrcIdx->azColl[i]; 003353 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 003354 } 003355 if( i==pSrcIdx->nColumn ){ 003356 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003357 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003358 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 003359 } 003360 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 003361 idxInsFlags |= OPFLAG_NCHANGE; 003362 } 003363 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 003364 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003365 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003366 && !HasRowid(pDest) 003367 && IsPrimaryKeyIndex(pDestIdx) 003368 ){ 003369 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 003370 } 003371 } 003372 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 003373 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 003374 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 003375 sqlite3VdbeJumpHere(v, addr1); 003376 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003377 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003378 } 003379 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 003380 sqlite3ReleaseTempReg(pParse, regRowid); 003381 sqlite3ReleaseTempReg(pParse, regData); 003382 if( emptyDestTest ){ 003383 sqlite3AutoincrementEnd(pParse); 003384 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 003385 sqlite3VdbeJumpHere(v, emptyDestTest); 003386 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003387 return 0; 003388 }else{ 003389 return 1; 003390 } 003391 } 003392 #endif /* SQLITE_OMIT_XFER_OPT */