000001 /* 000002 ** 2005 May 25 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains the implementation of the sqlite3_prepare() 000013 ** interface, and routines that contribute to loading the database schema 000014 ** from disk. 000015 */ 000016 #include "sqliteInt.h" 000017 000018 /* 000019 ** Fill the InitData structure with an error message that indicates 000020 ** that the database is corrupt. 000021 */ 000022 static void corruptSchema( 000023 InitData *pData, /* Initialization context */ 000024 char **azObj, /* Type and name of object being parsed */ 000025 const char *zExtra /* Error information */ 000026 ){ 000027 sqlite3 *db = pData->db; 000028 if( db->mallocFailed ){ 000029 pData->rc = SQLITE_NOMEM_BKPT; 000030 }else if( pData->pzErrMsg[0]!=0 ){ 000031 /* A error message has already been generated. Do not overwrite it */ 000032 }else if( pData->mInitFlags & (INITFLAG_AlterMask) ){ 000033 static const char *azAlterType[] = { 000034 "rename", 000035 "drop column", 000036 "add column" 000037 }; 000038 *pData->pzErrMsg = sqlite3MPrintf(db, 000039 "error in %s %s after %s: %s", azObj[0], azObj[1], 000040 azAlterType[(pData->mInitFlags&INITFLAG_AlterMask)-1], 000041 zExtra 000042 ); 000043 pData->rc = SQLITE_ERROR; 000044 }else if( db->flags & SQLITE_WriteSchema ){ 000045 pData->rc = SQLITE_CORRUPT_BKPT; 000046 }else{ 000047 char *z; 000048 const char *zObj = azObj[1] ? azObj[1] : "?"; 000049 z = sqlite3MPrintf(db, "malformed database schema (%s)", zObj); 000050 if( zExtra && zExtra[0] ) z = sqlite3MPrintf(db, "%z - %s", z, zExtra); 000051 *pData->pzErrMsg = z; 000052 pData->rc = SQLITE_CORRUPT_BKPT; 000053 } 000054 } 000055 000056 /* 000057 ** Check to see if any sibling index (another index on the same table) 000058 ** of pIndex has the same root page number, and if it does, return true. 000059 ** This would indicate a corrupt schema. 000060 */ 000061 int sqlite3IndexHasDuplicateRootPage(Index *pIndex){ 000062 Index *p; 000063 for(p=pIndex->pTable->pIndex; p; p=p->pNext){ 000064 if( p->tnum==pIndex->tnum && p!=pIndex ) return 1; 000065 } 000066 return 0; 000067 } 000068 000069 /* forward declaration */ 000070 static int sqlite3Prepare( 000071 sqlite3 *db, /* Database handle. */ 000072 const char *zSql, /* UTF-8 encoded SQL statement. */ 000073 int nBytes, /* Length of zSql in bytes. */ 000074 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000075 Vdbe *pReprepare, /* VM being reprepared */ 000076 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000077 const char **pzTail /* OUT: End of parsed string */ 000078 ); 000079 000080 000081 /* 000082 ** This is the callback routine for the code that initializes the 000083 ** database. See sqlite3Init() below for additional information. 000084 ** This routine is also called from the OP_ParseSchema opcode of the VDBE. 000085 ** 000086 ** Each callback contains the following information: 000087 ** 000088 ** argv[0] = type of object: "table", "index", "trigger", or "view". 000089 ** argv[1] = name of thing being created 000090 ** argv[2] = associated table if an index or trigger 000091 ** argv[3] = root page number for table or index. 0 for trigger or view. 000092 ** argv[4] = SQL text for the CREATE statement. 000093 ** 000094 */ 000095 int sqlite3InitCallback(void *pInit, int argc, char **argv, char **NotUsed){ 000096 InitData *pData = (InitData*)pInit; 000097 sqlite3 *db = pData->db; 000098 int iDb = pData->iDb; 000099 000100 assert( argc==5 ); 000101 UNUSED_PARAMETER2(NotUsed, argc); 000102 assert( sqlite3_mutex_held(db->mutex) ); 000103 db->mDbFlags |= DBFLAG_EncodingFixed; 000104 if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ 000105 pData->nInitRow++; 000106 if( db->mallocFailed ){ 000107 corruptSchema(pData, argv, 0); 000108 return 1; 000109 } 000110 000111 assert( iDb>=0 && iDb<db->nDb ); 000112 if( argv[3]==0 ){ 000113 corruptSchema(pData, argv, 0); 000114 }else if( argv[4] 000115 && 'c'==sqlite3UpperToLower[(unsigned char)argv[4][0]] 000116 && 'r'==sqlite3UpperToLower[(unsigned char)argv[4][1]] ){ 000117 /* Call the parser to process a CREATE TABLE, INDEX or VIEW. 000118 ** But because db->init.busy is set to 1, no VDBE code is generated 000119 ** or executed. All the parser does is build the internal data 000120 ** structures that describe the table, index, or view. 000121 ** 000122 ** No other valid SQL statement, other than the variable CREATE statements, 000123 ** can begin with the letters "C" and "R". Thus, it is not possible run 000124 ** any other kind of statement while parsing the schema, even a corrupt 000125 ** schema. 000126 */ 000127 int rc; 000128 u8 saved_iDb = db->init.iDb; 000129 sqlite3_stmt *pStmt; 000130 TESTONLY(int rcp); /* Return code from sqlite3_prepare() */ 000131 000132 assert( db->init.busy ); 000133 db->init.iDb = iDb; 000134 if( sqlite3GetUInt32(argv[3], &db->init.newTnum)==0 000135 || (db->init.newTnum>pData->mxPage && pData->mxPage>0) 000136 ){ 000137 if( sqlite3Config.bExtraSchemaChecks ){ 000138 corruptSchema(pData, argv, "invalid rootpage"); 000139 } 000140 } 000141 db->init.orphanTrigger = 0; 000142 db->init.azInit = (const char**)argv; 000143 pStmt = 0; 000144 TESTONLY(rcp = ) sqlite3Prepare(db, argv[4], -1, 0, 0, &pStmt, 0); 000145 rc = db->errCode; 000146 assert( (rc&0xFF)==(rcp&0xFF) ); 000147 db->init.iDb = saved_iDb; 000148 /* assert( saved_iDb==0 || (db->mDbFlags & DBFLAG_Vacuum)!=0 ); */ 000149 if( SQLITE_OK!=rc ){ 000150 if( db->init.orphanTrigger ){ 000151 assert( iDb==1 ); 000152 }else{ 000153 if( rc > pData->rc ) pData->rc = rc; 000154 if( rc==SQLITE_NOMEM ){ 000155 sqlite3OomFault(db); 000156 }else if( rc!=SQLITE_INTERRUPT && (rc&0xFF)!=SQLITE_LOCKED ){ 000157 corruptSchema(pData, argv, sqlite3_errmsg(db)); 000158 } 000159 } 000160 } 000161 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 000162 sqlite3_finalize(pStmt); 000163 }else if( argv[1]==0 || (argv[4]!=0 && argv[4][0]!=0) ){ 000164 corruptSchema(pData, argv, 0); 000165 }else{ 000166 /* If the SQL column is blank it means this is an index that 000167 ** was created to be the PRIMARY KEY or to fulfill a UNIQUE 000168 ** constraint for a CREATE TABLE. The index should have already 000169 ** been created when we processed the CREATE TABLE. All we have 000170 ** to do here is record the root page number for that index. 000171 */ 000172 Index *pIndex; 000173 pIndex = sqlite3FindIndex(db, argv[1], db->aDb[iDb].zDbSName); 000174 if( pIndex==0 ){ 000175 corruptSchema(pData, argv, "orphan index"); 000176 }else 000177 if( sqlite3GetUInt32(argv[3],&pIndex->tnum)==0 000178 || pIndex->tnum<2 000179 || pIndex->tnum>pData->mxPage 000180 || sqlite3IndexHasDuplicateRootPage(pIndex) 000181 ){ 000182 if( sqlite3Config.bExtraSchemaChecks ){ 000183 corruptSchema(pData, argv, "invalid rootpage"); 000184 } 000185 } 000186 } 000187 return 0; 000188 } 000189 000190 /* 000191 ** Attempt to read the database schema and initialize internal 000192 ** data structures for a single database file. The index of the 000193 ** database file is given by iDb. iDb==0 is used for the main 000194 ** database. iDb==1 should never be used. iDb>=2 is used for 000195 ** auxiliary databases. Return one of the SQLITE_ error codes to 000196 ** indicate success or failure. 000197 */ 000198 int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg, u32 mFlags){ 000199 int rc; 000200 int i; 000201 #ifndef SQLITE_OMIT_DEPRECATED 000202 int size; 000203 #endif 000204 Db *pDb; 000205 char const *azArg[6]; 000206 int meta[5]; 000207 InitData initData; 000208 const char *zSchemaTabName; 000209 int openedTransaction = 0; 000210 int mask = ((db->mDbFlags & DBFLAG_EncodingFixed) | ~DBFLAG_EncodingFixed); 000211 000212 assert( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ); 000213 assert( iDb>=0 && iDb<db->nDb ); 000214 assert( db->aDb[iDb].pSchema ); 000215 assert( sqlite3_mutex_held(db->mutex) ); 000216 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 000217 000218 db->init.busy = 1; 000219 000220 /* Construct the in-memory representation schema tables (sqlite_schema or 000221 ** sqlite_temp_schema) by invoking the parser directly. The appropriate 000222 ** table name will be inserted automatically by the parser so we can just 000223 ** use the abbreviation "x" here. The parser will also automatically tag 000224 ** the schema table as read-only. */ 000225 azArg[0] = "table"; 000226 azArg[1] = zSchemaTabName = SCHEMA_TABLE(iDb); 000227 azArg[2] = azArg[1]; 000228 azArg[3] = "1"; 000229 azArg[4] = "CREATE TABLE x(type text,name text,tbl_name text," 000230 "rootpage int,sql text)"; 000231 azArg[5] = 0; 000232 initData.db = db; 000233 initData.iDb = iDb; 000234 initData.rc = SQLITE_OK; 000235 initData.pzErrMsg = pzErrMsg; 000236 initData.mInitFlags = mFlags; 000237 initData.nInitRow = 0; 000238 initData.mxPage = 0; 000239 sqlite3InitCallback(&initData, 5, (char **)azArg, 0); 000240 db->mDbFlags &= mask; 000241 if( initData.rc ){ 000242 rc = initData.rc; 000243 goto error_out; 000244 } 000245 000246 /* Create a cursor to hold the database open 000247 */ 000248 pDb = &db->aDb[iDb]; 000249 if( pDb->pBt==0 ){ 000250 assert( iDb==1 ); 000251 DbSetProperty(db, 1, DB_SchemaLoaded); 000252 rc = SQLITE_OK; 000253 goto error_out; 000254 } 000255 000256 /* If there is not already a read-only (or read-write) transaction opened 000257 ** on the b-tree database, open one now. If a transaction is opened, it 000258 ** will be closed before this function returns. */ 000259 sqlite3BtreeEnter(pDb->pBt); 000260 if( sqlite3BtreeTxnState(pDb->pBt)==SQLITE_TXN_NONE ){ 000261 rc = sqlite3BtreeBeginTrans(pDb->pBt, 0, 0); 000262 if( rc!=SQLITE_OK ){ 000263 sqlite3SetString(pzErrMsg, db, sqlite3ErrStr(rc)); 000264 goto initone_error_out; 000265 } 000266 openedTransaction = 1; 000267 } 000268 000269 /* Get the database meta information. 000270 ** 000271 ** Meta values are as follows: 000272 ** meta[0] Schema cookie. Changes with each schema change. 000273 ** meta[1] File format of schema layer. 000274 ** meta[2] Size of the page cache. 000275 ** meta[3] Largest rootpage (auto/incr_vacuum mode) 000276 ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE 000277 ** meta[5] User version 000278 ** meta[6] Incremental vacuum mode 000279 ** meta[7] unused 000280 ** meta[8] unused 000281 ** meta[9] unused 000282 ** 000283 ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to 000284 ** the possible values of meta[4]. 000285 */ 000286 for(i=0; i<ArraySize(meta); i++){ 000287 sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); 000288 } 000289 if( (db->flags & SQLITE_ResetDatabase)!=0 ){ 000290 memset(meta, 0, sizeof(meta)); 000291 } 000292 pDb->pSchema->schema_cookie = meta[BTREE_SCHEMA_VERSION-1]; 000293 000294 /* If opening a non-empty database, check the text encoding. For the 000295 ** main database, set sqlite3.enc to the encoding of the main database. 000296 ** For an attached db, it is an error if the encoding is not the same 000297 ** as sqlite3.enc. 000298 */ 000299 if( meta[BTREE_TEXT_ENCODING-1] ){ /* text encoding */ 000300 if( iDb==0 && (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){ 000301 u8 encoding; 000302 #ifndef SQLITE_OMIT_UTF16 000303 /* If opening the main database, set ENC(db). */ 000304 encoding = (u8)meta[BTREE_TEXT_ENCODING-1] & 3; 000305 if( encoding==0 ) encoding = SQLITE_UTF8; 000306 #else 000307 encoding = SQLITE_UTF8; 000308 #endif 000309 if( db->nVdbeActive>0 && encoding!=ENC(db) 000310 && (db->mDbFlags & DBFLAG_Vacuum)==0 000311 ){ 000312 rc = SQLITE_LOCKED; 000313 goto initone_error_out; 000314 }else{ 000315 sqlite3SetTextEncoding(db, encoding); 000316 } 000317 }else{ 000318 /* If opening an attached database, the encoding much match ENC(db) */ 000319 if( (meta[BTREE_TEXT_ENCODING-1] & 3)!=ENC(db) ){ 000320 sqlite3SetString(pzErrMsg, db, "attached databases must use the same" 000321 " text encoding as main database"); 000322 rc = SQLITE_ERROR; 000323 goto initone_error_out; 000324 } 000325 } 000326 } 000327 pDb->pSchema->enc = ENC(db); 000328 000329 if( pDb->pSchema->cache_size==0 ){ 000330 #ifndef SQLITE_OMIT_DEPRECATED 000331 size = sqlite3AbsInt32(meta[BTREE_DEFAULT_CACHE_SIZE-1]); 000332 if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } 000333 pDb->pSchema->cache_size = size; 000334 #else 000335 pDb->pSchema->cache_size = SQLITE_DEFAULT_CACHE_SIZE; 000336 #endif 000337 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); 000338 } 000339 000340 /* 000341 ** file_format==1 Version 3.0.0. 000342 ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN 000343 ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults 000344 ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants 000345 */ 000346 pDb->pSchema->file_format = (u8)meta[BTREE_FILE_FORMAT-1]; 000347 if( pDb->pSchema->file_format==0 ){ 000348 pDb->pSchema->file_format = 1; 000349 } 000350 if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ 000351 sqlite3SetString(pzErrMsg, db, "unsupported file format"); 000352 rc = SQLITE_ERROR; 000353 goto initone_error_out; 000354 } 000355 000356 /* Ticket #2804: When we open a database in the newer file format, 000357 ** clear the legacy_file_format pragma flag so that a VACUUM will 000358 ** not downgrade the database and thus invalidate any descending 000359 ** indices that the user might have created. 000360 */ 000361 if( iDb==0 && meta[BTREE_FILE_FORMAT-1]>=4 ){ 000362 db->flags &= ~(u64)SQLITE_LegacyFileFmt; 000363 } 000364 000365 /* Read the schema information out of the schema tables 000366 */ 000367 assert( db->init.busy ); 000368 initData.mxPage = sqlite3BtreeLastPage(pDb->pBt); 000369 { 000370 char *zSql; 000371 zSql = sqlite3MPrintf(db, 000372 "SELECT*FROM\"%w\".%s ORDER BY rowid", 000373 db->aDb[iDb].zDbSName, zSchemaTabName); 000374 #ifndef SQLITE_OMIT_AUTHORIZATION 000375 { 000376 sqlite3_xauth xAuth; 000377 xAuth = db->xAuth; 000378 db->xAuth = 0; 000379 #endif 000380 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 000381 #ifndef SQLITE_OMIT_AUTHORIZATION 000382 db->xAuth = xAuth; 000383 } 000384 #endif 000385 if( rc==SQLITE_OK ) rc = initData.rc; 000386 sqlite3DbFree(db, zSql); 000387 #ifndef SQLITE_OMIT_ANALYZE 000388 if( rc==SQLITE_OK ){ 000389 sqlite3AnalysisLoad(db, iDb); 000390 } 000391 #endif 000392 } 000393 assert( pDb == &(db->aDb[iDb]) ); 000394 if( db->mallocFailed ){ 000395 rc = SQLITE_NOMEM_BKPT; 000396 sqlite3ResetAllSchemasOfConnection(db); 000397 pDb = &db->aDb[iDb]; 000398 }else 000399 if( rc==SQLITE_OK || ((db->flags&SQLITE_NoSchemaError) && rc!=SQLITE_NOMEM)){ 000400 /* Hack: If the SQLITE_NoSchemaError flag is set, then consider 000401 ** the schema loaded, even if errors (other than OOM) occurred. In 000402 ** this situation the current sqlite3_prepare() operation will fail, 000403 ** but the following one will attempt to compile the supplied statement 000404 ** against whatever subset of the schema was loaded before the error 000405 ** occurred. 000406 ** 000407 ** The primary purpose of this is to allow access to the sqlite_schema 000408 ** table even when its contents have been corrupted. 000409 */ 000410 DbSetProperty(db, iDb, DB_SchemaLoaded); 000411 rc = SQLITE_OK; 000412 } 000413 000414 /* Jump here for an error that occurs after successfully allocating 000415 ** curMain and calling sqlite3BtreeEnter(). For an error that occurs 000416 ** before that point, jump to error_out. 000417 */ 000418 initone_error_out: 000419 if( openedTransaction ){ 000420 sqlite3BtreeCommit(pDb->pBt); 000421 } 000422 sqlite3BtreeLeave(pDb->pBt); 000423 000424 error_out: 000425 if( rc ){ 000426 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 000427 sqlite3OomFault(db); 000428 } 000429 sqlite3ResetOneSchema(db, iDb); 000430 } 000431 db->init.busy = 0; 000432 return rc; 000433 } 000434 000435 /* 000436 ** Initialize all database files - the main database file, the file 000437 ** used to store temporary tables, and any additional database files 000438 ** created using ATTACH statements. Return a success code. If an 000439 ** error occurs, write an error message into *pzErrMsg. 000440 ** 000441 ** After a database is initialized, the DB_SchemaLoaded bit is set 000442 ** bit is set in the flags field of the Db structure. 000443 */ 000444 int sqlite3Init(sqlite3 *db, char **pzErrMsg){ 000445 int i, rc; 000446 int commit_internal = !(db->mDbFlags&DBFLAG_SchemaChange); 000447 000448 assert( sqlite3_mutex_held(db->mutex) ); 000449 assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) ); 000450 assert( db->init.busy==0 ); 000451 ENC(db) = SCHEMA_ENC(db); 000452 assert( db->nDb>0 ); 000453 /* Do the main schema first */ 000454 if( !DbHasProperty(db, 0, DB_SchemaLoaded) ){ 000455 rc = sqlite3InitOne(db, 0, pzErrMsg, 0); 000456 if( rc ) return rc; 000457 } 000458 /* All other schemas after the main schema. The "temp" schema must be last */ 000459 for(i=db->nDb-1; i>0; i--){ 000460 assert( i==1 || sqlite3BtreeHoldsMutex(db->aDb[i].pBt) ); 000461 if( !DbHasProperty(db, i, DB_SchemaLoaded) ){ 000462 rc = sqlite3InitOne(db, i, pzErrMsg, 0); 000463 if( rc ) return rc; 000464 } 000465 } 000466 if( commit_internal ){ 000467 sqlite3CommitInternalChanges(db); 000468 } 000469 return SQLITE_OK; 000470 } 000471 000472 /* 000473 ** This routine is a no-op if the database schema is already initialized. 000474 ** Otherwise, the schema is loaded. An error code is returned. 000475 */ 000476 int sqlite3ReadSchema(Parse *pParse){ 000477 int rc = SQLITE_OK; 000478 sqlite3 *db = pParse->db; 000479 assert( sqlite3_mutex_held(db->mutex) ); 000480 if( !db->init.busy ){ 000481 rc = sqlite3Init(db, &pParse->zErrMsg); 000482 if( rc!=SQLITE_OK ){ 000483 pParse->rc = rc; 000484 pParse->nErr++; 000485 }else if( db->noSharedCache ){ 000486 db->mDbFlags |= DBFLAG_SchemaKnownOk; 000487 } 000488 } 000489 return rc; 000490 } 000491 000492 000493 /* 000494 ** Check schema cookies in all databases. If any cookie is out 000495 ** of date set pParse->rc to SQLITE_SCHEMA. If all schema cookies 000496 ** make no changes to pParse->rc. 000497 */ 000498 static void schemaIsValid(Parse *pParse){ 000499 sqlite3 *db = pParse->db; 000500 int iDb; 000501 int rc; 000502 int cookie; 000503 000504 assert( pParse->checkSchema ); 000505 assert( sqlite3_mutex_held(db->mutex) ); 000506 for(iDb=0; iDb<db->nDb; iDb++){ 000507 int openedTransaction = 0; /* True if a transaction is opened */ 000508 Btree *pBt = db->aDb[iDb].pBt; /* Btree database to read cookie from */ 000509 if( pBt==0 ) continue; 000510 000511 /* If there is not already a read-only (or read-write) transaction opened 000512 ** on the b-tree database, open one now. If a transaction is opened, it 000513 ** will be closed immediately after reading the meta-value. */ 000514 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_NONE ){ 000515 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 000516 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ 000517 sqlite3OomFault(db); 000518 pParse->rc = SQLITE_NOMEM; 000519 } 000520 if( rc!=SQLITE_OK ) return; 000521 openedTransaction = 1; 000522 } 000523 000524 /* Read the schema cookie from the database. If it does not match the 000525 ** value stored as part of the in-memory schema representation, 000526 ** set Parse.rc to SQLITE_SCHEMA. */ 000527 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&cookie); 000528 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 000529 if( cookie!=db->aDb[iDb].pSchema->schema_cookie ){ 000530 if( DbHasProperty(db, iDb, DB_SchemaLoaded) ) pParse->rc = SQLITE_SCHEMA; 000531 sqlite3ResetOneSchema(db, iDb); 000532 } 000533 000534 /* Close the transaction, if one was opened. */ 000535 if( openedTransaction ){ 000536 sqlite3BtreeCommit(pBt); 000537 } 000538 } 000539 } 000540 000541 /* 000542 ** Convert a schema pointer into the iDb index that indicates 000543 ** which database file in db->aDb[] the schema refers to. 000544 ** 000545 ** If the same database is attached more than once, the first 000546 ** attached database is returned. 000547 */ 000548 int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ 000549 int i = -32768; 000550 000551 /* If pSchema is NULL, then return -32768. This happens when code in 000552 ** expr.c is trying to resolve a reference to a transient table (i.e. one 000553 ** created by a sub-select). In this case the return value of this 000554 ** function should never be used. 000555 ** 000556 ** We return -32768 instead of the more usual -1 simply because using 000557 ** -32768 as the incorrect index into db->aDb[] is much 000558 ** more likely to cause a segfault than -1 (of course there are assert() 000559 ** statements too, but it never hurts to play the odds) and 000560 ** -32768 will still fit into a 16-bit signed integer. 000561 */ 000562 assert( sqlite3_mutex_held(db->mutex) ); 000563 if( pSchema ){ 000564 for(i=0; 1; i++){ 000565 assert( i<db->nDb ); 000566 if( db->aDb[i].pSchema==pSchema ){ 000567 break; 000568 } 000569 } 000570 assert( i>=0 && i<db->nDb ); 000571 } 000572 return i; 000573 } 000574 000575 /* 000576 ** Free all memory allocations in the pParse object 000577 */ 000578 void sqlite3ParseObjectReset(Parse *pParse){ 000579 sqlite3 *db = pParse->db; 000580 assert( db!=0 ); 000581 assert( db->pParse==pParse ); 000582 assert( pParse->nested==0 ); 000583 #ifndef SQLITE_OMIT_SHARED_CACHE 000584 if( pParse->aTableLock ) sqlite3DbNNFreeNN(db, pParse->aTableLock); 000585 #endif 000586 while( pParse->pCleanup ){ 000587 ParseCleanup *pCleanup = pParse->pCleanup; 000588 pParse->pCleanup = pCleanup->pNext; 000589 pCleanup->xCleanup(db, pCleanup->pPtr); 000590 sqlite3DbNNFreeNN(db, pCleanup); 000591 } 000592 if( pParse->aLabel ) sqlite3DbNNFreeNN(db, pParse->aLabel); 000593 if( pParse->pConstExpr ){ 000594 sqlite3ExprListDelete(db, pParse->pConstExpr); 000595 } 000596 assert( db->lookaside.bDisable >= pParse->disableLookaside ); 000597 db->lookaside.bDisable -= pParse->disableLookaside; 000598 db->lookaside.sz = db->lookaside.bDisable ? 0 : db->lookaside.szTrue; 000599 assert( pParse->db->pParse==pParse ); 000600 db->pParse = pParse->pOuterParse; 000601 } 000602 000603 /* 000604 ** Add a new cleanup operation to a Parser. The cleanup should happen when 000605 ** the parser object is destroyed. But, beware: the cleanup might happen 000606 ** immediately. 000607 ** 000608 ** Use this mechanism for uncommon cleanups. There is a higher setup 000609 ** cost for this mechanism (an extra malloc), so it should not be used 000610 ** for common cleanups that happen on most calls. But for less 000611 ** common cleanups, we save a single NULL-pointer comparison in 000612 ** sqlite3ParseObjectReset(), which reduces the total CPU cycle count. 000613 ** 000614 ** If a memory allocation error occurs, then the cleanup happens immediately. 000615 ** When either SQLITE_DEBUG or SQLITE_COVERAGE_TEST are defined, the 000616 ** pParse->earlyCleanup flag is set in that case. Calling code show verify 000617 ** that test cases exist for which this happens, to guard against possible 000618 ** use-after-free errors following an OOM. The preferred way to do this is 000619 ** to immediately follow the call to this routine with: 000620 ** 000621 ** testcase( pParse->earlyCleanup ); 000622 ** 000623 ** This routine returns a copy of its pPtr input (the third parameter) 000624 ** except if an early cleanup occurs, in which case it returns NULL. So 000625 ** another way to check for early cleanup is to check the return value. 000626 ** Or, stop using the pPtr parameter with this call and use only its 000627 ** return value thereafter. Something like this: 000628 ** 000629 ** pObj = sqlite3ParserAddCleanup(pParse, destructor, pObj); 000630 */ 000631 void *sqlite3ParserAddCleanup( 000632 Parse *pParse, /* Destroy when this Parser finishes */ 000633 void (*xCleanup)(sqlite3*,void*), /* The cleanup routine */ 000634 void *pPtr /* Pointer to object to be cleaned up */ 000635 ){ 000636 ParseCleanup *pCleanup; 000637 if( sqlite3FaultSim(300) ){ 000638 pCleanup = 0; 000639 sqlite3OomFault(pParse->db); 000640 }else{ 000641 pCleanup = sqlite3DbMallocRaw(pParse->db, sizeof(*pCleanup)); 000642 } 000643 if( pCleanup ){ 000644 pCleanup->pNext = pParse->pCleanup; 000645 pParse->pCleanup = pCleanup; 000646 pCleanup->pPtr = pPtr; 000647 pCleanup->xCleanup = xCleanup; 000648 }else{ 000649 xCleanup(pParse->db, pPtr); 000650 pPtr = 0; 000651 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) 000652 pParse->earlyCleanup = 1; 000653 #endif 000654 } 000655 return pPtr; 000656 } 000657 000658 /* 000659 ** Turn bulk memory into a valid Parse object and link that Parse object 000660 ** into database connection db. 000661 ** 000662 ** Call sqlite3ParseObjectReset() to undo this operation. 000663 ** 000664 ** Caution: Do not confuse this routine with sqlite3ParseObjectInit() which 000665 ** is generated by Lemon. 000666 */ 000667 void sqlite3ParseObjectInit(Parse *pParse, sqlite3 *db){ 000668 memset(PARSE_HDR(pParse), 0, PARSE_HDR_SZ); 000669 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); 000670 assert( db->pParse!=pParse ); 000671 pParse->pOuterParse = db->pParse; 000672 db->pParse = pParse; 000673 pParse->db = db; 000674 if( db->mallocFailed ) sqlite3ErrorMsg(pParse, "out of memory"); 000675 } 000676 000677 /* 000678 ** Maximum number of times that we will try again to prepare a statement 000679 ** that returns SQLITE_ERROR_RETRY. 000680 */ 000681 #ifndef SQLITE_MAX_PREPARE_RETRY 000682 # define SQLITE_MAX_PREPARE_RETRY 25 000683 #endif 000684 000685 /* 000686 ** Compile the UTF-8 encoded SQL statement zSql into a statement handle. 000687 */ 000688 static int sqlite3Prepare( 000689 sqlite3 *db, /* Database handle. */ 000690 const char *zSql, /* UTF-8 encoded SQL statement. */ 000691 int nBytes, /* Length of zSql in bytes. */ 000692 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000693 Vdbe *pReprepare, /* VM being reprepared */ 000694 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000695 const char **pzTail /* OUT: End of parsed string */ 000696 ){ 000697 int rc = SQLITE_OK; /* Result code */ 000698 int i; /* Loop counter */ 000699 Parse sParse; /* Parsing context */ 000700 000701 /* sqlite3ParseObjectInit(&sParse, db); // inlined for performance */ 000702 memset(PARSE_HDR(&sParse), 0, PARSE_HDR_SZ); 000703 memset(PARSE_TAIL(&sParse), 0, PARSE_TAIL_SZ); 000704 sParse.pOuterParse = db->pParse; 000705 db->pParse = &sParse; 000706 sParse.db = db; 000707 if( pReprepare ){ 000708 sParse.pReprepare = pReprepare; 000709 sParse.explain = sqlite3_stmt_isexplain((sqlite3_stmt*)pReprepare); 000710 }else{ 000711 assert( sParse.pReprepare==0 ); 000712 } 000713 assert( ppStmt && *ppStmt==0 ); 000714 if( db->mallocFailed ){ 000715 sqlite3ErrorMsg(&sParse, "out of memory"); 000716 db->errCode = rc = SQLITE_NOMEM; 000717 goto end_prepare; 000718 } 000719 assert( sqlite3_mutex_held(db->mutex) ); 000720 000721 /* For a long-term use prepared statement avoid the use of 000722 ** lookaside memory. 000723 */ 000724 if( prepFlags & SQLITE_PREPARE_PERSISTENT ){ 000725 sParse.disableLookaside++; 000726 DisableLookaside; 000727 } 000728 sParse.prepFlags = prepFlags & 0xff; 000729 000730 /* Check to verify that it is possible to get a read lock on all 000731 ** database schemas. The inability to get a read lock indicates that 000732 ** some other database connection is holding a write-lock, which in 000733 ** turn means that the other connection has made uncommitted changes 000734 ** to the schema. 000735 ** 000736 ** Were we to proceed and prepare the statement against the uncommitted 000737 ** schema changes and if those schema changes are subsequently rolled 000738 ** back and different changes are made in their place, then when this 000739 ** prepared statement goes to run the schema cookie would fail to detect 000740 ** the schema change. Disaster would follow. 000741 ** 000742 ** This thread is currently holding mutexes on all Btrees (because 000743 ** of the sqlite3BtreeEnterAll() in sqlite3LockAndPrepare()) so it 000744 ** is not possible for another thread to start a new schema change 000745 ** while this routine is running. Hence, we do not need to hold 000746 ** locks on the schema, we just need to make sure nobody else is 000747 ** holding them. 000748 ** 000749 ** Note that setting READ_UNCOMMITTED overrides most lock detection, 000750 ** but it does *not* override schema lock detection, so this all still 000751 ** works even if READ_UNCOMMITTED is set. 000752 */ 000753 if( !db->noSharedCache ){ 000754 for(i=0; i<db->nDb; i++) { 000755 Btree *pBt = db->aDb[i].pBt; 000756 if( pBt ){ 000757 assert( sqlite3BtreeHoldsMutex(pBt) ); 000758 rc = sqlite3BtreeSchemaLocked(pBt); 000759 if( rc ){ 000760 const char *zDb = db->aDb[i].zDbSName; 000761 sqlite3ErrorWithMsg(db, rc, "database schema is locked: %s", zDb); 000762 testcase( db->flags & SQLITE_ReadUncommit ); 000763 goto end_prepare; 000764 } 000765 } 000766 } 000767 } 000768 000769 #ifndef SQLITE_OMIT_VIRTUALTABLE 000770 if( db->pDisconnect ) sqlite3VtabUnlockList(db); 000771 #endif 000772 000773 if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ 000774 char *zSqlCopy; 000775 int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; 000776 testcase( nBytes==mxLen ); 000777 testcase( nBytes==mxLen+1 ); 000778 if( nBytes>mxLen ){ 000779 sqlite3ErrorWithMsg(db, SQLITE_TOOBIG, "statement too long"); 000780 rc = sqlite3ApiExit(db, SQLITE_TOOBIG); 000781 goto end_prepare; 000782 } 000783 zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); 000784 if( zSqlCopy ){ 000785 sqlite3RunParser(&sParse, zSqlCopy); 000786 sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; 000787 sqlite3DbFree(db, zSqlCopy); 000788 }else{ 000789 sParse.zTail = &zSql[nBytes]; 000790 } 000791 }else{ 000792 sqlite3RunParser(&sParse, zSql); 000793 } 000794 assert( 0==sParse.nQueryLoop ); 000795 000796 if( pzTail ){ 000797 *pzTail = sParse.zTail; 000798 } 000799 000800 if( db->init.busy==0 ){ 000801 sqlite3VdbeSetSql(sParse.pVdbe, zSql, (int)(sParse.zTail-zSql), prepFlags); 000802 } 000803 if( db->mallocFailed ){ 000804 sParse.rc = SQLITE_NOMEM_BKPT; 000805 sParse.checkSchema = 0; 000806 } 000807 if( sParse.rc!=SQLITE_OK && sParse.rc!=SQLITE_DONE ){ 000808 if( sParse.checkSchema && db->init.busy==0 ){ 000809 schemaIsValid(&sParse); 000810 } 000811 if( sParse.pVdbe ){ 000812 sqlite3VdbeFinalize(sParse.pVdbe); 000813 } 000814 assert( 0==(*ppStmt) ); 000815 rc = sParse.rc; 000816 if( sParse.zErrMsg ){ 000817 sqlite3ErrorWithMsg(db, rc, "%s", sParse.zErrMsg); 000818 sqlite3DbFree(db, sParse.zErrMsg); 000819 }else{ 000820 sqlite3Error(db, rc); 000821 } 000822 }else{ 000823 assert( sParse.zErrMsg==0 ); 000824 *ppStmt = (sqlite3_stmt*)sParse.pVdbe; 000825 rc = SQLITE_OK; 000826 sqlite3ErrorClear(db); 000827 } 000828 000829 000830 /* Delete any TriggerPrg structures allocated while parsing this statement. */ 000831 while( sParse.pTriggerPrg ){ 000832 TriggerPrg *pT = sParse.pTriggerPrg; 000833 sParse.pTriggerPrg = pT->pNext; 000834 sqlite3DbFree(db, pT); 000835 } 000836 000837 end_prepare: 000838 000839 sqlite3ParseObjectReset(&sParse); 000840 return rc; 000841 } 000842 static int sqlite3LockAndPrepare( 000843 sqlite3 *db, /* Database handle. */ 000844 const char *zSql, /* UTF-8 encoded SQL statement. */ 000845 int nBytes, /* Length of zSql in bytes. */ 000846 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000847 Vdbe *pOld, /* VM being reprepared */ 000848 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000849 const char **pzTail /* OUT: End of parsed string */ 000850 ){ 000851 int rc; 000852 int cnt = 0; 000853 000854 #ifdef SQLITE_ENABLE_API_ARMOR 000855 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 000856 #endif 000857 *ppStmt = 0; 000858 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 000859 return SQLITE_MISUSE_BKPT; 000860 } 000861 sqlite3_mutex_enter(db->mutex); 000862 sqlite3BtreeEnterAll(db); 000863 do{ 000864 /* Make multiple attempts to compile the SQL, until it either succeeds 000865 ** or encounters a permanent error. A schema problem after one schema 000866 ** reset is considered a permanent error. */ 000867 rc = sqlite3Prepare(db, zSql, nBytes, prepFlags, pOld, ppStmt, pzTail); 000868 assert( rc==SQLITE_OK || *ppStmt==0 ); 000869 if( rc==SQLITE_OK || db->mallocFailed ) break; 000870 }while( (rc==SQLITE_ERROR_RETRY && (cnt++)<SQLITE_MAX_PREPARE_RETRY) 000871 || (rc==SQLITE_SCHEMA && (sqlite3ResetOneSchema(db,-1), cnt++)==0) ); 000872 sqlite3BtreeLeaveAll(db); 000873 rc = sqlite3ApiExit(db, rc); 000874 assert( (rc&db->errMask)==rc ); 000875 db->busyHandler.nBusy = 0; 000876 sqlite3_mutex_leave(db->mutex); 000877 assert( rc==SQLITE_OK || (*ppStmt)==0 ); 000878 return rc; 000879 } 000880 000881 000882 /* 000883 ** Rerun the compilation of a statement after a schema change. 000884 ** 000885 ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, 000886 ** if the statement cannot be recompiled because another connection has 000887 ** locked the sqlite3_schema table, return SQLITE_LOCKED. If any other error 000888 ** occurs, return SQLITE_SCHEMA. 000889 */ 000890 int sqlite3Reprepare(Vdbe *p){ 000891 int rc; 000892 sqlite3_stmt *pNew; 000893 const char *zSql; 000894 sqlite3 *db; 000895 u8 prepFlags; 000896 000897 assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); 000898 zSql = sqlite3_sql((sqlite3_stmt *)p); 000899 assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ 000900 db = sqlite3VdbeDb(p); 000901 assert( sqlite3_mutex_held(db->mutex) ); 000902 prepFlags = sqlite3VdbePrepareFlags(p); 000903 rc = sqlite3LockAndPrepare(db, zSql, -1, prepFlags, p, &pNew, 0); 000904 if( rc ){ 000905 if( rc==SQLITE_NOMEM ){ 000906 sqlite3OomFault(db); 000907 } 000908 assert( pNew==0 ); 000909 return rc; 000910 }else{ 000911 assert( pNew!=0 ); 000912 } 000913 sqlite3VdbeSwap((Vdbe*)pNew, p); 000914 sqlite3TransferBindings(pNew, (sqlite3_stmt*)p); 000915 sqlite3VdbeResetStepResult((Vdbe*)pNew); 000916 sqlite3VdbeFinalize((Vdbe*)pNew); 000917 return SQLITE_OK; 000918 } 000919 000920 000921 /* 000922 ** Two versions of the official API. Legacy and new use. In the legacy 000923 ** version, the original SQL text is not saved in the prepared statement 000924 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 000925 ** sqlite3_step(). In the new version, the original SQL text is retained 000926 ** and the statement is automatically recompiled if an schema change 000927 ** occurs. 000928 */ 000929 int sqlite3_prepare( 000930 sqlite3 *db, /* Database handle. */ 000931 const char *zSql, /* UTF-8 encoded SQL statement. */ 000932 int nBytes, /* Length of zSql in bytes. */ 000933 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000934 const char **pzTail /* OUT: End of parsed string */ 000935 ){ 000936 int rc; 000937 rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail); 000938 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 000939 return rc; 000940 } 000941 int sqlite3_prepare_v2( 000942 sqlite3 *db, /* Database handle. */ 000943 const char *zSql, /* UTF-8 encoded SQL statement. */ 000944 int nBytes, /* Length of zSql in bytes. */ 000945 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000946 const char **pzTail /* OUT: End of parsed string */ 000947 ){ 000948 int rc; 000949 /* EVIDENCE-OF: R-37923-12173 The sqlite3_prepare_v2() interface works 000950 ** exactly the same as sqlite3_prepare_v3() with a zero prepFlags 000951 ** parameter. 000952 ** 000953 ** Proof in that the 5th parameter to sqlite3LockAndPrepare is 0 */ 000954 rc = sqlite3LockAndPrepare(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,0, 000955 ppStmt,pzTail); 000956 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 000957 return rc; 000958 } 000959 int sqlite3_prepare_v3( 000960 sqlite3 *db, /* Database handle. */ 000961 const char *zSql, /* UTF-8 encoded SQL statement. */ 000962 int nBytes, /* Length of zSql in bytes. */ 000963 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000964 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000965 const char **pzTail /* OUT: End of parsed string */ 000966 ){ 000967 int rc; 000968 /* EVIDENCE-OF: R-56861-42673 sqlite3_prepare_v3() differs from 000969 ** sqlite3_prepare_v2() only in having the extra prepFlags parameter, 000970 ** which is a bit array consisting of zero or more of the 000971 ** SQLITE_PREPARE_* flags. 000972 ** 000973 ** Proof by comparison to the implementation of sqlite3_prepare_v2() 000974 ** directly above. */ 000975 rc = sqlite3LockAndPrepare(db,zSql,nBytes, 000976 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 000977 0,ppStmt,pzTail); 000978 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); 000979 return rc; 000980 } 000981 000982 000983 #ifndef SQLITE_OMIT_UTF16 000984 /* 000985 ** Compile the UTF-16 encoded SQL statement zSql into a statement handle. 000986 */ 000987 static int sqlite3Prepare16( 000988 sqlite3 *db, /* Database handle. */ 000989 const void *zSql, /* UTF-16 encoded SQL statement. */ 000990 int nBytes, /* Length of zSql in bytes. */ 000991 u32 prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 000992 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 000993 const void **pzTail /* OUT: End of parsed string */ 000994 ){ 000995 /* This function currently works by first transforming the UTF-16 000996 ** encoded string to UTF-8, then invoking sqlite3_prepare(). The 000997 ** tricky bit is figuring out the pointer to return in *pzTail. 000998 */ 000999 char *zSql8; 001000 const char *zTail8 = 0; 001001 int rc = SQLITE_OK; 001002 001003 #ifdef SQLITE_ENABLE_API_ARMOR 001004 if( ppStmt==0 ) return SQLITE_MISUSE_BKPT; 001005 #endif 001006 *ppStmt = 0; 001007 if( !sqlite3SafetyCheckOk(db)||zSql==0 ){ 001008 return SQLITE_MISUSE_BKPT; 001009 } 001010 001011 /* Make sure nBytes is non-negative and correct. It should be the 001012 ** number of bytes until the end of the input buffer or until the first 001013 ** U+0000 character. If the input nBytes is odd, convert it into 001014 ** an even number. If the input nBytes is negative, then the input 001015 ** must be terminated by at least one U+0000 character */ 001016 if( nBytes>=0 ){ 001017 int sz; 001018 const char *z = (const char*)zSql; 001019 for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){} 001020 nBytes = sz; 001021 }else{ 001022 int sz; 001023 const char *z = (const char*)zSql; 001024 for(sz=0; z[sz]!=0 || z[sz+1]!=0; sz += 2){} 001025 nBytes = sz; 001026 } 001027 001028 sqlite3_mutex_enter(db->mutex); 001029 zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); 001030 if( zSql8 ){ 001031 rc = sqlite3LockAndPrepare(db, zSql8, -1, prepFlags, 0, ppStmt, &zTail8); 001032 } 001033 001034 if( zTail8 && pzTail ){ 001035 /* If sqlite3_prepare returns a tail pointer, we calculate the 001036 ** equivalent pointer into the UTF-16 string by counting the unicode 001037 ** characters between zSql8 and zTail8, and then returning a pointer 001038 ** the same number of characters into the UTF-16 string. 001039 */ 001040 int chars_parsed = sqlite3Utf8CharLen(zSql8, (int)(zTail8-zSql8)); 001041 *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, nBytes, chars_parsed); 001042 } 001043 sqlite3DbFree(db, zSql8); 001044 rc = sqlite3ApiExit(db, rc); 001045 sqlite3_mutex_leave(db->mutex); 001046 return rc; 001047 } 001048 001049 /* 001050 ** Two versions of the official API. Legacy and new use. In the legacy 001051 ** version, the original SQL text is not saved in the prepared statement 001052 ** and so if a schema change occurs, SQLITE_SCHEMA is returned by 001053 ** sqlite3_step(). In the new version, the original SQL text is retained 001054 ** and the statement is automatically recompiled if an schema change 001055 ** occurs. 001056 */ 001057 int sqlite3_prepare16( 001058 sqlite3 *db, /* Database handle. */ 001059 const void *zSql, /* UTF-16 encoded SQL statement. */ 001060 int nBytes, /* Length of zSql in bytes. */ 001061 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001062 const void **pzTail /* OUT: End of parsed string */ 001063 ){ 001064 int rc; 001065 rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); 001066 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001067 return rc; 001068 } 001069 int sqlite3_prepare16_v2( 001070 sqlite3 *db, /* Database handle. */ 001071 const void *zSql, /* UTF-16 encoded SQL statement. */ 001072 int nBytes, /* Length of zSql in bytes. */ 001073 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001074 const void **pzTail /* OUT: End of parsed string */ 001075 ){ 001076 int rc; 001077 rc = sqlite3Prepare16(db,zSql,nBytes,SQLITE_PREPARE_SAVESQL,ppStmt,pzTail); 001078 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001079 return rc; 001080 } 001081 int sqlite3_prepare16_v3( 001082 sqlite3 *db, /* Database handle. */ 001083 const void *zSql, /* UTF-16 encoded SQL statement. */ 001084 int nBytes, /* Length of zSql in bytes. */ 001085 unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_* flags */ 001086 sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ 001087 const void **pzTail /* OUT: End of parsed string */ 001088 ){ 001089 int rc; 001090 rc = sqlite3Prepare16(db,zSql,nBytes, 001091 SQLITE_PREPARE_SAVESQL|(prepFlags&SQLITE_PREPARE_MASK), 001092 ppStmt,pzTail); 001093 assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ 001094 return rc; 001095 } 001096 001097 #endif /* SQLITE_OMIT_UTF16 */