000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** The code in this file implements the function that runs the 000013 ** bytecode of a prepared statement. 000014 ** 000015 ** Various scripts scan this source file in order to generate HTML 000016 ** documentation, headers files, or other derived files. The formatting 000017 ** of the code in this file is, therefore, important. See other comments 000018 ** in this file for details. If in doubt, do not deviate from existing 000019 ** commenting and indentation practices when changing or adding code. 000020 */ 000021 #include "sqliteInt.h" 000022 #include "vdbeInt.h" 000023 000024 /* 000025 ** High-resolution hardware timer used for debugging and testing only. 000026 */ 000027 #if defined(VDBE_PROFILE) \ 000028 || defined(SQLITE_PERFORMANCE_TRACE) \ 000029 || defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000030 # include "hwtime.h" 000031 #endif 000032 000033 /* 000034 ** Invoke this macro on memory cells just prior to changing the 000035 ** value of the cell. This macro verifies that shallow copies are 000036 ** not misused. A shallow copy of a string or blob just copies a 000037 ** pointer to the string or blob, not the content. If the original 000038 ** is changed while the copy is still in use, the string or blob might 000039 ** be changed out from under the copy. This macro verifies that nothing 000040 ** like that ever happens. 000041 */ 000042 #ifdef SQLITE_DEBUG 000043 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 000044 #else 000045 # define memAboutToChange(P,M) 000046 #endif 000047 000048 /* 000049 ** The following global variable is incremented every time a cursor 000050 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 000051 ** procedures use this information to make sure that indices are 000052 ** working correctly. This variable has no function other than to 000053 ** help verify the correct operation of the library. 000054 */ 000055 #ifdef SQLITE_TEST 000056 int sqlite3_search_count = 0; 000057 #endif 000058 000059 /* 000060 ** When this global variable is positive, it gets decremented once before 000061 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 000062 ** field of the sqlite3 structure is set in order to simulate an interrupt. 000063 ** 000064 ** This facility is used for testing purposes only. It does not function 000065 ** in an ordinary build. 000066 */ 000067 #ifdef SQLITE_TEST 000068 int sqlite3_interrupt_count = 0; 000069 #endif 000070 000071 /* 000072 ** The next global variable is incremented each type the OP_Sort opcode 000073 ** is executed. The test procedures use this information to make sure that 000074 ** sorting is occurring or not occurring at appropriate times. This variable 000075 ** has no function other than to help verify the correct operation of the 000076 ** library. 000077 */ 000078 #ifdef SQLITE_TEST 000079 int sqlite3_sort_count = 0; 000080 #endif 000081 000082 /* 000083 ** The next global variable records the size of the largest MEM_Blob 000084 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 000085 ** use this information to make sure that the zero-blob functionality 000086 ** is working correctly. This variable has no function other than to 000087 ** help verify the correct operation of the library. 000088 */ 000089 #ifdef SQLITE_TEST 000090 int sqlite3_max_blobsize = 0; 000091 static void updateMaxBlobsize(Mem *p){ 000092 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 000093 sqlite3_max_blobsize = p->n; 000094 } 000095 } 000096 #endif 000097 000098 /* 000099 ** This macro evaluates to true if either the update hook or the preupdate 000100 ** hook are enabled for database connect DB. 000101 */ 000102 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 000103 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 000104 #else 000105 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 000106 #endif 000107 000108 /* 000109 ** The next global variable is incremented each time the OP_Found opcode 000110 ** is executed. This is used to test whether or not the foreign key 000111 ** operation implemented using OP_FkIsZero is working. This variable 000112 ** has no function other than to help verify the correct operation of the 000113 ** library. 000114 */ 000115 #ifdef SQLITE_TEST 000116 int sqlite3_found_count = 0; 000117 #endif 000118 000119 /* 000120 ** Test a register to see if it exceeds the current maximum blob size. 000121 ** If it does, record the new maximum blob size. 000122 */ 000123 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 000124 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 000125 #else 000126 # define UPDATE_MAX_BLOBSIZE(P) 000127 #endif 000128 000129 #ifdef SQLITE_DEBUG 000130 /* This routine provides a convenient place to set a breakpoint during 000131 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 000132 ** each opcode is printed. Variables "pc" (program counter) and pOp are 000133 ** available to add conditionals to the breakpoint. GDB example: 000134 ** 000135 ** break test_trace_breakpoint if pc=22 000136 ** 000137 ** Other useful labels for breakpoints include: 000138 ** test_addop_breakpoint(pc,pOp) 000139 ** sqlite3CorruptError(lineno) 000140 ** sqlite3MisuseError(lineno) 000141 ** sqlite3CantopenError(lineno) 000142 */ 000143 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 000144 static u64 n = 0; 000145 (void)pc; 000146 (void)pOp; 000147 (void)v; 000148 n++; 000149 if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */ 000150 } 000151 #endif 000152 000153 /* 000154 ** Invoke the VDBE coverage callback, if that callback is defined. This 000155 ** feature is used for test suite validation only and does not appear an 000156 ** production builds. 000157 ** 000158 ** M is the type of branch. I is the direction taken for this instance of 000159 ** the branch. 000160 ** 000161 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 000162 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 000163 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 000164 ** 000165 ** In other words, if M is 2, then I is either 0 (for fall-through) or 000166 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 000167 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 000168 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 000169 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 000170 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 000171 ** depending on if the operands are less than, equal, or greater than. 000172 ** 000173 ** iSrcLine is the source code line (from the __LINE__ macro) that 000174 ** generated the VDBE instruction combined with flag bits. The source 000175 ** code line number is in the lower 24 bits of iSrcLine and the upper 000176 ** 8 bytes are flags. The lower three bits of the flags indicate 000177 ** values for I that should never occur. For example, if the branch is 000178 ** always taken, the flags should be 0x05 since the fall-through and 000179 ** alternate branch are never taken. If a branch is never taken then 000180 ** flags should be 0x06 since only the fall-through approach is allowed. 000181 ** 000182 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 000183 ** interested in equal or not-equal. In other words, I==0 and I==2 000184 ** should be treated as equivalent 000185 ** 000186 ** Since only a line number is retained, not the filename, this macro 000187 ** only works for amalgamation builds. But that is ok, since these macros 000188 ** should be no-ops except for special builds used to measure test coverage. 000189 */ 000190 #if !defined(SQLITE_VDBE_COVERAGE) 000191 # define VdbeBranchTaken(I,M) 000192 #else 000193 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 000194 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 000195 u8 mNever; 000196 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 000197 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 000198 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 000199 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 000200 I = 1<<I; 000201 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 000202 ** the flags indicate directions that the branch can never go. If 000203 ** a branch really does go in one of those directions, assert right 000204 ** away. */ 000205 mNever = iSrcLine >> 24; 000206 assert( (I & mNever)==0 ); 000207 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 000208 /* Invoke the branch coverage callback with three arguments: 000209 ** iSrcLine - the line number of the VdbeCoverage() macro, with 000210 ** flags removed. 000211 ** I - Mask of bits 0x07 indicating which cases are are 000212 ** fulfilled by this instance of the jump. 0x01 means 000213 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 000214 ** impossible cases (ex: if the comparison is never NULL) 000215 ** are filled in automatically so that the coverage 000216 ** measurement logic does not flag those impossible cases 000217 ** as missed coverage. 000218 ** M - Type of jump. Same as M argument above 000219 */ 000220 I |= mNever; 000221 if( M==2 ) I |= 0x04; 000222 if( M==4 ){ 000223 I |= 0x08; 000224 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 000225 } 000226 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 000227 iSrcLine&0xffffff, I, M); 000228 } 000229 #endif 000230 000231 /* 000232 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 000233 ** a pointer to a dynamically allocated string where some other entity 000234 ** is responsible for deallocating that string. Because the register 000235 ** does not control the string, it might be deleted without the register 000236 ** knowing it. 000237 ** 000238 ** This routine converts an ephemeral string into a dynamically allocated 000239 ** string that the register itself controls. In other words, it 000240 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 000241 */ 000242 #define Deephemeralize(P) \ 000243 if( ((P)->flags&MEM_Ephem)!=0 \ 000244 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 000245 000246 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 000247 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 000248 000249 /* 000250 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 000251 ** if we run out of memory. 000252 */ 000253 static VdbeCursor *allocateCursor( 000254 Vdbe *p, /* The virtual machine */ 000255 int iCur, /* Index of the new VdbeCursor */ 000256 int nField, /* Number of fields in the table or index */ 000257 u8 eCurType /* Type of the new cursor */ 000258 ){ 000259 /* Find the memory cell that will be used to store the blob of memory 000260 ** required for this VdbeCursor structure. It is convenient to use a 000261 ** vdbe memory cell to manage the memory allocation required for a 000262 ** VdbeCursor structure for the following reasons: 000263 ** 000264 ** * Sometimes cursor numbers are used for a couple of different 000265 ** purposes in a vdbe program. The different uses might require 000266 ** different sized allocations. Memory cells provide growable 000267 ** allocations. 000268 ** 000269 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 000270 ** be freed lazily via the sqlite3_release_memory() API. This 000271 ** minimizes the number of malloc calls made by the system. 000272 ** 000273 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 000274 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 000275 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 000276 */ 000277 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 000278 000279 int nByte; 000280 VdbeCursor *pCx = 0; 000281 nByte = 000282 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 000283 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 000284 000285 assert( iCur>=0 && iCur<p->nCursor ); 000286 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 000287 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 000288 p->apCsr[iCur] = 0; 000289 } 000290 000291 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 000292 ** the pMem used to hold space for the cursor has enough storage available 000293 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 000294 ** to hold cursors, it is faster to in-line the logic. */ 000295 assert( pMem->flags==MEM_Undefined ); 000296 assert( (pMem->flags & MEM_Dyn)==0 ); 000297 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 000298 if( pMem->szMalloc<nByte ){ 000299 if( pMem->szMalloc>0 ){ 000300 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 000301 } 000302 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 000303 if( pMem->zMalloc==0 ){ 000304 pMem->szMalloc = 0; 000305 return 0; 000306 } 000307 pMem->szMalloc = nByte; 000308 } 000309 000310 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 000311 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 000312 pCx->eCurType = eCurType; 000313 pCx->nField = nField; 000314 pCx->aOffset = &pCx->aType[nField]; 000315 if( eCurType==CURTYPE_BTREE ){ 000316 pCx->uc.pCursor = (BtCursor*) 000317 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 000318 sqlite3BtreeCursorZero(pCx->uc.pCursor); 000319 } 000320 return pCx; 000321 } 000322 000323 /* 000324 ** The string in pRec is known to look like an integer and to have a 000325 ** floating point value of rValue. Return true and set *piValue to the 000326 ** integer value if the string is in range to be an integer. Otherwise, 000327 ** return false. 000328 */ 000329 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 000330 i64 iValue; 000331 iValue = sqlite3RealToI64(rValue); 000332 if( sqlite3RealSameAsInt(rValue,iValue) ){ 000333 *piValue = iValue; 000334 return 1; 000335 } 000336 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 000337 } 000338 000339 /* 000340 ** Try to convert a value into a numeric representation if we can 000341 ** do so without loss of information. In other words, if the string 000342 ** looks like a number, convert it into a number. If it does not 000343 ** look like a number, leave it alone. 000344 ** 000345 ** If the bTryForInt flag is true, then extra effort is made to give 000346 ** an integer representation. Strings that look like floating point 000347 ** values but which have no fractional component (example: '48.00') 000348 ** will have a MEM_Int representation when bTryForInt is true. 000349 ** 000350 ** If bTryForInt is false, then if the input string contains a decimal 000351 ** point or exponential notation, the result is only MEM_Real, even 000352 ** if there is an exact integer representation of the quantity. 000353 */ 000354 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 000355 double rValue; 000356 u8 enc = pRec->enc; 000357 int rc; 000358 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 000359 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 000360 if( rc<=0 ) return; 000361 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 000362 pRec->flags |= MEM_Int; 000363 }else{ 000364 pRec->u.r = rValue; 000365 pRec->flags |= MEM_Real; 000366 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 000367 } 000368 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 000369 ** string representation after computing a numeric equivalent, because the 000370 ** string representation might not be the canonical representation for the 000371 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 000372 pRec->flags &= ~MEM_Str; 000373 } 000374 000375 /* 000376 ** Processing is determine by the affinity parameter: 000377 ** 000378 ** SQLITE_AFF_INTEGER: 000379 ** SQLITE_AFF_REAL: 000380 ** SQLITE_AFF_NUMERIC: 000381 ** Try to convert pRec to an integer representation or a 000382 ** floating-point representation if an integer representation 000383 ** is not possible. Note that the integer representation is 000384 ** always preferred, even if the affinity is REAL, because 000385 ** an integer representation is more space efficient on disk. 000386 ** 000387 ** SQLITE_AFF_FLEXNUM: 000388 ** If the value is text, then try to convert it into a number of 000389 ** some kind (integer or real) but do not make any other changes. 000390 ** 000391 ** SQLITE_AFF_TEXT: 000392 ** Convert pRec to a text representation. 000393 ** 000394 ** SQLITE_AFF_BLOB: 000395 ** SQLITE_AFF_NONE: 000396 ** No-op. pRec is unchanged. 000397 */ 000398 static void applyAffinity( 000399 Mem *pRec, /* The value to apply affinity to */ 000400 char affinity, /* The affinity to be applied */ 000401 u8 enc /* Use this text encoding */ 000402 ){ 000403 if( affinity>=SQLITE_AFF_NUMERIC ){ 000404 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 000405 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM ); 000406 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 000407 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){ 000408 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 000409 }else if( affinity<=SQLITE_AFF_REAL ){ 000410 sqlite3VdbeIntegerAffinity(pRec); 000411 } 000412 } 000413 }else if( affinity==SQLITE_AFF_TEXT ){ 000414 /* Only attempt the conversion to TEXT if there is an integer or real 000415 ** representation (blob and NULL do not get converted) but no string 000416 ** representation. It would be harmless to repeat the conversion if 000417 ** there is already a string rep, but it is pointless to waste those 000418 ** CPU cycles. */ 000419 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 000420 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 000421 testcase( pRec->flags & MEM_Int ); 000422 testcase( pRec->flags & MEM_Real ); 000423 testcase( pRec->flags & MEM_IntReal ); 000424 sqlite3VdbeMemStringify(pRec, enc, 1); 000425 } 000426 } 000427 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 000428 } 000429 } 000430 000431 /* 000432 ** Try to convert the type of a function argument or a result column 000433 ** into a numeric representation. Use either INTEGER or REAL whichever 000434 ** is appropriate. But only do the conversion if it is possible without 000435 ** loss of information and return the revised type of the argument. 000436 */ 000437 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 000438 int eType = sqlite3_value_type(pVal); 000439 if( eType==SQLITE_TEXT ){ 000440 Mem *pMem = (Mem*)pVal; 000441 applyNumericAffinity(pMem, 0); 000442 eType = sqlite3_value_type(pVal); 000443 } 000444 return eType; 000445 } 000446 000447 /* 000448 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 000449 ** not the internal Mem* type. 000450 */ 000451 void sqlite3ValueApplyAffinity( 000452 sqlite3_value *pVal, 000453 u8 affinity, 000454 u8 enc 000455 ){ 000456 applyAffinity((Mem *)pVal, affinity, enc); 000457 } 000458 000459 /* 000460 ** pMem currently only holds a string type (or maybe a BLOB that we can 000461 ** interpret as a string if we want to). Compute its corresponding 000462 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 000463 ** accordingly. 000464 */ 000465 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 000466 int rc; 000467 sqlite3_int64 ix; 000468 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 000469 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 000470 if( ExpandBlob(pMem) ){ 000471 pMem->u.i = 0; 000472 return MEM_Int; 000473 } 000474 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 000475 if( rc<=0 ){ 000476 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 000477 pMem->u.i = ix; 000478 return MEM_Int; 000479 }else{ 000480 return MEM_Real; 000481 } 000482 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 000483 pMem->u.i = ix; 000484 return MEM_Int; 000485 } 000486 return MEM_Real; 000487 } 000488 000489 /* 000490 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 000491 ** none. 000492 ** 000493 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 000494 ** But it does set pMem->u.r and pMem->u.i appropriately. 000495 */ 000496 static u16 numericType(Mem *pMem){ 000497 assert( (pMem->flags & MEM_Null)==0 000498 || pMem->db==0 || pMem->db->mallocFailed ); 000499 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ 000500 testcase( pMem->flags & MEM_Int ); 000501 testcase( pMem->flags & MEM_Real ); 000502 testcase( pMem->flags & MEM_IntReal ); 000503 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); 000504 } 000505 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 000506 testcase( pMem->flags & MEM_Str ); 000507 testcase( pMem->flags & MEM_Blob ); 000508 return computeNumericType(pMem); 000509 return 0; 000510 } 000511 000512 #ifdef SQLITE_DEBUG 000513 /* 000514 ** Write a nice string representation of the contents of cell pMem 000515 ** into buffer zBuf, length nBuf. 000516 */ 000517 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 000518 int f = pMem->flags; 000519 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 000520 if( f&MEM_Blob ){ 000521 int i; 000522 char c; 000523 if( f & MEM_Dyn ){ 000524 c = 'z'; 000525 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000526 }else if( f & MEM_Static ){ 000527 c = 't'; 000528 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000529 }else if( f & MEM_Ephem ){ 000530 c = 'e'; 000531 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000532 }else{ 000533 c = 's'; 000534 } 000535 sqlite3_str_appendf(pStr, "%cx[", c); 000536 for(i=0; i<25 && i<pMem->n; i++){ 000537 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 000538 } 000539 sqlite3_str_appendf(pStr, "|"); 000540 for(i=0; i<25 && i<pMem->n; i++){ 000541 char z = pMem->z[i]; 000542 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 000543 } 000544 sqlite3_str_appendf(pStr,"]"); 000545 if( f & MEM_Zero ){ 000546 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 000547 } 000548 }else if( f & MEM_Str ){ 000549 int j; 000550 u8 c; 000551 if( f & MEM_Dyn ){ 000552 c = 'z'; 000553 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000554 }else if( f & MEM_Static ){ 000555 c = 't'; 000556 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000557 }else if( f & MEM_Ephem ){ 000558 c = 'e'; 000559 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000560 }else{ 000561 c = 's'; 000562 } 000563 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 000564 for(j=0; j<25 && j<pMem->n; j++){ 000565 c = pMem->z[j]; 000566 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 000567 } 000568 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 000569 if( f & MEM_Term ){ 000570 sqlite3_str_appendf(pStr, "(0-term)"); 000571 } 000572 } 000573 } 000574 #endif 000575 000576 #ifdef SQLITE_DEBUG 000577 /* 000578 ** Print the value of a register for tracing purposes: 000579 */ 000580 static void memTracePrint(Mem *p){ 000581 if( p->flags & MEM_Undefined ){ 000582 printf(" undefined"); 000583 }else if( p->flags & MEM_Null ){ 000584 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 000585 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 000586 printf(" si:%lld", p->u.i); 000587 }else if( (p->flags & (MEM_IntReal))!=0 ){ 000588 printf(" ir:%lld", p->u.i); 000589 }else if( p->flags & MEM_Int ){ 000590 printf(" i:%lld", p->u.i); 000591 #ifndef SQLITE_OMIT_FLOATING_POINT 000592 }else if( p->flags & MEM_Real ){ 000593 printf(" r:%.17g", p->u.r); 000594 #endif 000595 }else if( sqlite3VdbeMemIsRowSet(p) ){ 000596 printf(" (rowset)"); 000597 }else{ 000598 StrAccum acc; 000599 char zBuf[1000]; 000600 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 000601 sqlite3VdbeMemPrettyPrint(p, &acc); 000602 printf(" %s", sqlite3StrAccumFinish(&acc)); 000603 } 000604 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 000605 } 000606 static void registerTrace(int iReg, Mem *p){ 000607 printf("R[%d] = ", iReg); 000608 memTracePrint(p); 000609 if( p->pScopyFrom ){ 000610 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 000611 } 000612 printf("\n"); 000613 sqlite3VdbeCheckMemInvariants(p); 000614 } 000615 /**/ void sqlite3PrintMem(Mem *pMem){ 000616 memTracePrint(pMem); 000617 printf("\n"); 000618 fflush(stdout); 000619 } 000620 #endif 000621 000622 #ifdef SQLITE_DEBUG 000623 /* 000624 ** Show the values of all registers in the virtual machine. Used for 000625 ** interactive debugging. 000626 */ 000627 void sqlite3VdbeRegisterDump(Vdbe *v){ 000628 int i; 000629 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 000630 } 000631 #endif /* SQLITE_DEBUG */ 000632 000633 000634 #ifdef SQLITE_DEBUG 000635 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 000636 #else 000637 # define REGISTER_TRACE(R,M) 000638 #endif 000639 000640 #ifndef NDEBUG 000641 /* 000642 ** This function is only called from within an assert() expression. It 000643 ** checks that the sqlite3.nTransaction variable is correctly set to 000644 ** the number of non-transaction savepoints currently in the 000645 ** linked list starting at sqlite3.pSavepoint. 000646 ** 000647 ** Usage: 000648 ** 000649 ** assert( checkSavepointCount(db) ); 000650 */ 000651 static int checkSavepointCount(sqlite3 *db){ 000652 int n = 0; 000653 Savepoint *p; 000654 for(p=db->pSavepoint; p; p=p->pNext) n++; 000655 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 000656 return 1; 000657 } 000658 #endif 000659 000660 /* 000661 ** Return the register of pOp->p2 after first preparing it to be 000662 ** overwritten with an integer value. 000663 */ 000664 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 000665 sqlite3VdbeMemSetNull(pOut); 000666 pOut->flags = MEM_Int; 000667 return pOut; 000668 } 000669 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 000670 Mem *pOut; 000671 assert( pOp->p2>0 ); 000672 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000673 pOut = &p->aMem[pOp->p2]; 000674 memAboutToChange(p, pOut); 000675 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 000676 return out2PrereleaseWithClear(pOut); 000677 }else{ 000678 pOut->flags = MEM_Int; 000679 return pOut; 000680 } 000681 } 000682 000683 /* 000684 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 000685 ** with pOp->p3. Return the hash. 000686 */ 000687 static u64 filterHash(const Mem *aMem, const Op *pOp){ 000688 int i, mx; 000689 u64 h = 0; 000690 000691 assert( pOp->p4type==P4_INT32 ); 000692 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 000693 const Mem *p = &aMem[i]; 000694 if( p->flags & (MEM_Int|MEM_IntReal) ){ 000695 h += p->u.i; 000696 }else if( p->flags & MEM_Real ){ 000697 h += sqlite3VdbeIntValue(p); 000698 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 000699 /* All strings have the same hash and all blobs have the same hash, 000700 ** though, at least, those hashes are different from each other and 000701 ** from NULL. */ 000702 h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); 000703 } 000704 } 000705 return h; 000706 } 000707 000708 000709 /* 000710 ** For OP_Column, factor out the case where content is loaded from 000711 ** overflow pages, so that the code to implement this case is separate 000712 ** the common case where all content fits on the page. Factoring out 000713 ** the code reduces register pressure and helps the common case 000714 ** to run faster. 000715 */ 000716 static SQLITE_NOINLINE int vdbeColumnFromOverflow( 000717 VdbeCursor *pC, /* The BTree cursor from which we are reading */ 000718 int iCol, /* The column to read */ 000719 int t, /* The serial-type code for the column value */ 000720 i64 iOffset, /* Offset to the start of the content value */ 000721 u32 cacheStatus, /* Current Vdbe.cacheCtr value */ 000722 u32 colCacheCtr, /* Current value of the column cache counter */ 000723 Mem *pDest /* Store the value into this register. */ 000724 ){ 000725 int rc; 000726 sqlite3 *db = pDest->db; 000727 int encoding = pDest->enc; 000728 int len = sqlite3VdbeSerialTypeLen(t); 000729 assert( pC->eCurType==CURTYPE_BTREE ); 000730 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; 000731 if( len > 4000 && pC->pKeyInfo==0 ){ 000732 /* Cache large column values that are on overflow pages using 000733 ** an RCStr (reference counted string) so that if they are reloaded, 000734 ** that do not have to be copied a second time. The overhead of 000735 ** creating and managing the cache is such that this is only 000736 ** profitable for larger TEXT and BLOB values. 000737 ** 000738 ** Only do this on table-btrees so that writes to index-btrees do not 000739 ** need to clear the cache. This buys performance in the common case 000740 ** in exchange for generality. 000741 */ 000742 VdbeTxtBlbCache *pCache; 000743 char *pBuf; 000744 if( pC->colCache==0 ){ 000745 pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); 000746 if( pC->pCache==0 ) return SQLITE_NOMEM; 000747 pC->colCache = 1; 000748 } 000749 pCache = pC->pCache; 000750 if( pCache->pCValue==0 000751 || pCache->iCol!=iCol 000752 || pCache->cacheStatus!=cacheStatus 000753 || pCache->colCacheCtr!=colCacheCtr 000754 || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) 000755 ){ 000756 if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); 000757 pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); 000758 if( pBuf==0 ) return SQLITE_NOMEM; 000759 rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); 000760 if( rc ) return rc; 000761 pBuf[len] = 0; 000762 pBuf[len+1] = 0; 000763 pBuf[len+2] = 0; 000764 pCache->iCol = iCol; 000765 pCache->cacheStatus = cacheStatus; 000766 pCache->colCacheCtr = colCacheCtr; 000767 pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); 000768 }else{ 000769 pBuf = pCache->pCValue; 000770 } 000771 assert( t>=12 ); 000772 sqlite3RCStrRef(pBuf); 000773 if( t&1 ){ 000774 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, 000775 sqlite3RCStrUnref); 000776 pDest->flags |= MEM_Term; 000777 }else{ 000778 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, 000779 sqlite3RCStrUnref); 000780 } 000781 }else{ 000782 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); 000783 if( rc ) return rc; 000784 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 000785 if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ 000786 pDest->z[len] = 0; 000787 pDest->flags |= MEM_Term; 000788 } 000789 } 000790 pDest->flags &= ~MEM_Ephem; 000791 return rc; 000792 } 000793 000794 000795 /* 000796 ** Return the symbolic name for the data type of a pMem 000797 */ 000798 static const char *vdbeMemTypeName(Mem *pMem){ 000799 static const char *azTypes[] = { 000800 /* SQLITE_INTEGER */ "INT", 000801 /* SQLITE_FLOAT */ "REAL", 000802 /* SQLITE_TEXT */ "TEXT", 000803 /* SQLITE_BLOB */ "BLOB", 000804 /* SQLITE_NULL */ "NULL" 000805 }; 000806 return azTypes[sqlite3_value_type(pMem)-1]; 000807 } 000808 000809 /* 000810 ** Execute as much of a VDBE program as we can. 000811 ** This is the core of sqlite3_step(). 000812 */ 000813 int sqlite3VdbeExec( 000814 Vdbe *p /* The VDBE */ 000815 ){ 000816 Op *aOp = p->aOp; /* Copy of p->aOp */ 000817 Op *pOp = aOp; /* Current operation */ 000818 #ifdef SQLITE_DEBUG 000819 Op *pOrigOp; /* Value of pOp at the top of the loop */ 000820 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 000821 u8 iCompareIsInit = 0; /* iCompare is initialized */ 000822 #endif 000823 int rc = SQLITE_OK; /* Value to return */ 000824 sqlite3 *db = p->db; /* The database */ 000825 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 000826 u8 encoding = ENC(db); /* The database encoding */ 000827 int iCompare = 0; /* Result of last comparison */ 000828 u64 nVmStep = 0; /* Number of virtual machine steps */ 000829 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000830 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 000831 #endif 000832 Mem *aMem = p->aMem; /* Copy of p->aMem */ 000833 Mem *pIn1 = 0; /* 1st input operand */ 000834 Mem *pIn2 = 0; /* 2nd input operand */ 000835 Mem *pIn3 = 0; /* 3rd input operand */ 000836 Mem *pOut = 0; /* Output operand */ 000837 u32 colCacheCtr = 0; /* Column cache counter */ 000838 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000839 u64 *pnCycle = 0; 000840 int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; 000841 #endif 000842 /*** INSERT STACK UNION HERE ***/ 000843 000844 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 000845 if( DbMaskNonZero(p->lockMask) ){ 000846 sqlite3VdbeEnter(p); 000847 } 000848 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000849 if( db->xProgress ){ 000850 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 000851 assert( 0 < db->nProgressOps ); 000852 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 000853 }else{ 000854 nProgressLimit = LARGEST_UINT64; 000855 } 000856 #endif 000857 if( p->rc==SQLITE_NOMEM ){ 000858 /* This happens if a malloc() inside a call to sqlite3_column_text() or 000859 ** sqlite3_column_text16() failed. */ 000860 goto no_mem; 000861 } 000862 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 000863 testcase( p->rc!=SQLITE_OK ); 000864 p->rc = SQLITE_OK; 000865 assert( p->bIsReader || p->readOnly!=0 ); 000866 p->iCurrentTime = 0; 000867 assert( p->explain==0 ); 000868 db->busyHandler.nBusy = 0; 000869 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 000870 sqlite3VdbeIOTraceSql(p); 000871 #ifdef SQLITE_DEBUG 000872 sqlite3BeginBenignMalloc(); 000873 if( p->pc==0 000874 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 000875 ){ 000876 int i; 000877 int once = 1; 000878 sqlite3VdbePrintSql(p); 000879 if( p->db->flags & SQLITE_VdbeListing ){ 000880 printf("VDBE Program Listing:\n"); 000881 for(i=0; i<p->nOp; i++){ 000882 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 000883 } 000884 } 000885 if( p->db->flags & SQLITE_VdbeEQP ){ 000886 for(i=0; i<p->nOp; i++){ 000887 if( aOp[i].opcode==OP_Explain ){ 000888 if( once ) printf("VDBE Query Plan:\n"); 000889 printf("%s\n", aOp[i].p4.z); 000890 once = 0; 000891 } 000892 } 000893 } 000894 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 000895 } 000896 sqlite3EndBenignMalloc(); 000897 #endif 000898 for(pOp=&aOp[p->pc]; 1; pOp++){ 000899 /* Errors are detected by individual opcodes, with an immediate 000900 ** jumps to abort_due_to_error. */ 000901 assert( rc==SQLITE_OK ); 000902 000903 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 000904 nVmStep++; 000905 000906 #if defined(VDBE_PROFILE) 000907 pOp->nExec++; 000908 pnCycle = &pOp->nCycle; 000909 if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime(); 000910 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000911 if( bStmtScanStatus ){ 000912 pOp->nExec++; 000913 pnCycle = &pOp->nCycle; 000914 *pnCycle -= sqlite3Hwtime(); 000915 } 000916 #endif 000917 000918 /* Only allow tracing if SQLITE_DEBUG is defined. 000919 */ 000920 #ifdef SQLITE_DEBUG 000921 if( db->flags & SQLITE_VdbeTrace ){ 000922 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 000923 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 000924 } 000925 #endif 000926 000927 000928 /* Check to see if we need to simulate an interrupt. This only happens 000929 ** if we have a special test build. 000930 */ 000931 #ifdef SQLITE_TEST 000932 if( sqlite3_interrupt_count>0 ){ 000933 sqlite3_interrupt_count--; 000934 if( sqlite3_interrupt_count==0 ){ 000935 sqlite3_interrupt(db); 000936 } 000937 } 000938 #endif 000939 000940 /* Sanity checking on other operands */ 000941 #ifdef SQLITE_DEBUG 000942 { 000943 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 000944 if( (opProperty & OPFLG_IN1)!=0 ){ 000945 assert( pOp->p1>0 ); 000946 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 000947 assert( memIsValid(&aMem[pOp->p1]) ); 000948 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 000949 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 000950 } 000951 if( (opProperty & OPFLG_IN2)!=0 ){ 000952 assert( pOp->p2>0 ); 000953 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000954 assert( memIsValid(&aMem[pOp->p2]) ); 000955 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 000956 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 000957 } 000958 if( (opProperty & OPFLG_IN3)!=0 ){ 000959 assert( pOp->p3>0 ); 000960 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000961 assert( memIsValid(&aMem[pOp->p3]) ); 000962 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 000963 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 000964 } 000965 if( (opProperty & OPFLG_OUT2)!=0 ){ 000966 assert( pOp->p2>0 ); 000967 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000968 memAboutToChange(p, &aMem[pOp->p2]); 000969 } 000970 if( (opProperty & OPFLG_OUT3)!=0 ){ 000971 assert( pOp->p3>0 ); 000972 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000973 memAboutToChange(p, &aMem[pOp->p3]); 000974 } 000975 } 000976 #endif 000977 #ifdef SQLITE_DEBUG 000978 pOrigOp = pOp; 000979 #endif 000980 000981 switch( pOp->opcode ){ 000982 000983 /***************************************************************************** 000984 ** What follows is a massive switch statement where each case implements a 000985 ** separate instruction in the virtual machine. If we follow the usual 000986 ** indentation conventions, each case should be indented by 6 spaces. But 000987 ** that is a lot of wasted space on the left margin. So the code within 000988 ** the switch statement will break with convention and be flush-left. Another 000989 ** big comment (similar to this one) will mark the point in the code where 000990 ** we transition back to normal indentation. 000991 ** 000992 ** The formatting of each case is important. The makefile for SQLite 000993 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 000994 ** file looking for lines that begin with "case OP_". The opcodes.h files 000995 ** will be filled with #defines that give unique integer values to each 000996 ** opcode and the opcodes.c file is filled with an array of strings where 000997 ** each string is the symbolic name for the corresponding opcode. If the 000998 ** case statement is followed by a comment of the form "/# same as ... #/" 000999 ** that comment is used to determine the particular value of the opcode. 001000 ** 001001 ** Other keywords in the comment that follows each case are used to 001002 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 001003 ** Keywords include: in1, in2, in3, out2, out3. See 001004 ** the mkopcodeh.awk script for additional information. 001005 ** 001006 ** Documentation about VDBE opcodes is generated by scanning this file 001007 ** for lines of that contain "Opcode:". That line and all subsequent 001008 ** comment lines are used in the generation of the opcode.html documentation 001009 ** file. 001010 ** 001011 ** SUMMARY: 001012 ** 001013 ** Formatting is important to scripts that scan this file. 001014 ** Do not deviate from the formatting style currently in use. 001015 ** 001016 *****************************************************************************/ 001017 001018 /* Opcode: Goto * P2 * * * 001019 ** 001020 ** An unconditional jump to address P2. 001021 ** The next instruction executed will be 001022 ** the one at index P2 from the beginning of 001023 ** the program. 001024 ** 001025 ** The P1 parameter is not actually used by this opcode. However, it 001026 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 001027 ** that this Goto is the bottom of a loop and that the lines from P2 down 001028 ** to the current line should be indented for EXPLAIN output. 001029 */ 001030 case OP_Goto: { /* jump */ 001031 001032 #ifdef SQLITE_DEBUG 001033 /* In debugging mode, when the p5 flags is set on an OP_Goto, that 001034 ** means we should really jump back to the preceding OP_ReleaseReg 001035 ** instruction. */ 001036 if( pOp->p5 ){ 001037 assert( pOp->p2 < (int)(pOp - aOp) ); 001038 assert( pOp->p2 > 1 ); 001039 pOp = &aOp[pOp->p2 - 2]; 001040 assert( pOp[1].opcode==OP_ReleaseReg ); 001041 goto check_for_interrupt; 001042 } 001043 #endif 001044 001045 jump_to_p2_and_check_for_interrupt: 001046 pOp = &aOp[pOp->p2 - 1]; 001047 001048 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 001049 ** OP_VNext, or OP_SorterNext) all jump here upon 001050 ** completion. Check to see if sqlite3_interrupt() has been called 001051 ** or if the progress callback needs to be invoked. 001052 ** 001053 ** This code uses unstructured "goto" statements and does not look clean. 001054 ** But that is not due to sloppy coding habits. The code is written this 001055 ** way for performance, to avoid having to run the interrupt and progress 001056 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 001057 ** faster according to "valgrind --tool=cachegrind" */ 001058 check_for_interrupt: 001059 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 001060 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001061 /* Call the progress callback if it is configured and the required number 001062 ** of VDBE ops have been executed (either since this invocation of 001063 ** sqlite3VdbeExec() or since last time the progress callback was called). 001064 ** If the progress callback returns non-zero, exit the virtual machine with 001065 ** a return code SQLITE_ABORT. 001066 */ 001067 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 001068 assert( db->nProgressOps!=0 ); 001069 nProgressLimit += db->nProgressOps; 001070 if( db->xProgress(db->pProgressArg) ){ 001071 nProgressLimit = LARGEST_UINT64; 001072 rc = SQLITE_INTERRUPT; 001073 goto abort_due_to_error; 001074 } 001075 } 001076 #endif 001077 001078 break; 001079 } 001080 001081 /* Opcode: Gosub P1 P2 * * * 001082 ** 001083 ** Write the current address onto register P1 001084 ** and then jump to address P2. 001085 */ 001086 case OP_Gosub: { /* jump */ 001087 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001088 pIn1 = &aMem[pOp->p1]; 001089 assert( VdbeMemDynamic(pIn1)==0 ); 001090 memAboutToChange(p, pIn1); 001091 pIn1->flags = MEM_Int; 001092 pIn1->u.i = (int)(pOp-aOp); 001093 REGISTER_TRACE(pOp->p1, pIn1); 001094 goto jump_to_p2_and_check_for_interrupt; 001095 } 001096 001097 /* Opcode: Return P1 P2 P3 * * 001098 ** 001099 ** Jump to the address stored in register P1. If P1 is a return address 001100 ** register, then this accomplishes a return from a subroutine. 001101 ** 001102 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 001103 ** values, otherwise execution falls through to the next opcode, and the 001104 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 001105 ** integer or else an assert() is raised. P3 should be set to 1 when 001106 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 001107 ** otherwise. 001108 ** 001109 ** The value in register P1 is unchanged by this opcode. 001110 ** 001111 ** P2 is not used by the byte-code engine. However, if P2 is positive 001112 ** and also less than the current address, then the "EXPLAIN" output 001113 ** formatter in the CLI will indent all opcodes from the P2 opcode up 001114 ** to be not including the current Return. P2 should be the first opcode 001115 ** in the subroutine from which this opcode is returning. Thus the P2 001116 ** value is a byte-code indentation hint. See tag-20220407a in 001117 ** wherecode.c and shell.c. 001118 */ 001119 case OP_Return: { /* in1 */ 001120 pIn1 = &aMem[pOp->p1]; 001121 if( pIn1->flags & MEM_Int ){ 001122 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 001123 pOp = &aOp[pIn1->u.i]; 001124 }else if( ALWAYS(pOp->p3) ){ 001125 VdbeBranchTaken(0, 2); 001126 } 001127 break; 001128 } 001129 001130 /* Opcode: InitCoroutine P1 P2 P3 * * 001131 ** 001132 ** Set up register P1 so that it will Yield to the coroutine 001133 ** located at address P3. 001134 ** 001135 ** If P2!=0 then the coroutine implementation immediately follows 001136 ** this opcode. So jump over the coroutine implementation to 001137 ** address P2. 001138 ** 001139 ** See also: EndCoroutine 001140 */ 001141 case OP_InitCoroutine: { /* jump0 */ 001142 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001143 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 001144 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 001145 pOut = &aMem[pOp->p1]; 001146 assert( !VdbeMemDynamic(pOut) ); 001147 pOut->u.i = pOp->p3 - 1; 001148 pOut->flags = MEM_Int; 001149 if( pOp->p2==0 ) break; 001150 001151 /* Most jump operations do a goto to this spot in order to update 001152 ** the pOp pointer. */ 001153 jump_to_p2: 001154 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 001155 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 001156 pOp = &aOp[pOp->p2 - 1]; 001157 break; 001158 } 001159 001160 /* Opcode: EndCoroutine P1 * * * * 001161 ** 001162 ** The instruction at the address in register P1 is a Yield. 001163 ** Jump to the P2 parameter of that Yield. 001164 ** After the jump, the value register P1 is left with a value 001165 ** such that subsequent OP_Yields go back to the this same 001166 ** OP_EndCoroutine instruction. 001167 ** 001168 ** See also: InitCoroutine 001169 */ 001170 case OP_EndCoroutine: { /* in1 */ 001171 VdbeOp *pCaller; 001172 pIn1 = &aMem[pOp->p1]; 001173 assert( pIn1->flags==MEM_Int ); 001174 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 001175 pCaller = &aOp[pIn1->u.i]; 001176 assert( pCaller->opcode==OP_Yield ); 001177 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 001178 pIn1->u.i = (int)(pOp - p->aOp) - 1; 001179 pOp = &aOp[pCaller->p2 - 1]; 001180 break; 001181 } 001182 001183 /* Opcode: Yield P1 P2 * * * 001184 ** 001185 ** Swap the program counter with the value in register P1. This 001186 ** has the effect of yielding to a coroutine. 001187 ** 001188 ** If the coroutine that is launched by this instruction ends with 001189 ** Yield or Return then continue to the next instruction. But if 001190 ** the coroutine launched by this instruction ends with 001191 ** EndCoroutine, then jump to P2 rather than continuing with the 001192 ** next instruction. 001193 ** 001194 ** See also: InitCoroutine 001195 */ 001196 case OP_Yield: { /* in1, jump0 */ 001197 int pcDest; 001198 pIn1 = &aMem[pOp->p1]; 001199 assert( VdbeMemDynamic(pIn1)==0 ); 001200 pIn1->flags = MEM_Int; 001201 pcDest = (int)pIn1->u.i; 001202 pIn1->u.i = (int)(pOp - aOp); 001203 REGISTER_TRACE(pOp->p1, pIn1); 001204 pOp = &aOp[pcDest]; 001205 break; 001206 } 001207 001208 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 001209 ** Synopsis: if r[P3]=null halt 001210 ** 001211 ** Check the value in register P3. If it is NULL then Halt using 001212 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 001213 ** value in register P3 is not NULL, then this routine is a no-op. 001214 ** The P5 parameter should be 1. 001215 */ 001216 case OP_HaltIfNull: { /* in3 */ 001217 pIn3 = &aMem[pOp->p3]; 001218 #ifdef SQLITE_DEBUG 001219 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001220 #endif 001221 if( (pIn3->flags & MEM_Null)==0 ) break; 001222 /* Fall through into OP_Halt */ 001223 /* no break */ deliberate_fall_through 001224 } 001225 001226 /* Opcode: Halt P1 P2 P3 P4 P5 001227 ** 001228 ** Exit immediately. All open cursors, etc are closed 001229 ** automatically. 001230 ** 001231 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 001232 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 001233 ** For errors, it can be some other value. If P1!=0 then P2 will determine 001234 ** whether or not to rollback the current transaction. Do not rollback 001235 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 001236 ** then back out all changes that have occurred during this execution of the 001237 ** VDBE, but do not rollback the transaction. 001238 ** 001239 ** If P3 is not zero and P4 is NULL, then P3 is a register that holds the 001240 ** text of an error message. 001241 ** 001242 ** If P3 is zero and P4 is not null then the error message string is held 001243 ** in P4. 001244 ** 001245 ** P5 is a value between 1 and 4, inclusive, then the P4 error message 001246 ** string is modified as follows: 001247 ** 001248 ** 1: NOT NULL constraint failed: P4 001249 ** 2: UNIQUE constraint failed: P4 001250 ** 3: CHECK constraint failed: P4 001251 ** 4: FOREIGN KEY constraint failed: P4 001252 ** 001253 ** If P3 is zero and P5 is not zero and P4 is NULL, then everything after 001254 ** the ":" is omitted. 001255 ** 001256 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 001257 ** every program. So a jump past the last instruction of the program 001258 ** is the same as executing Halt. 001259 */ 001260 case OP_Halt: { 001261 VdbeFrame *pFrame; 001262 int pcx; 001263 001264 #ifdef SQLITE_DEBUG 001265 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001266 #endif 001267 assert( pOp->p4type==P4_NOTUSED 001268 || pOp->p4type==P4_STATIC 001269 || pOp->p4type==P4_DYNAMIC ); 001270 001271 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates 001272 ** something is wrong with the code generator. Raise an assertion in order 001273 ** to bring this to the attention of fuzzers and other testing tools. */ 001274 assert( pOp->p1!=SQLITE_INTERNAL ); 001275 001276 if( p->pFrame && pOp->p1==SQLITE_OK ){ 001277 /* Halt the sub-program. Return control to the parent frame. */ 001278 pFrame = p->pFrame; 001279 p->pFrame = pFrame->pParent; 001280 p->nFrame--; 001281 sqlite3VdbeSetChanges(db, p->nChange); 001282 pcx = sqlite3VdbeFrameRestore(pFrame); 001283 if( pOp->p2==OE_Ignore ){ 001284 /* Instruction pcx is the OP_Program that invoked the sub-program 001285 ** currently being halted. If the p2 instruction of this OP_Halt 001286 ** instruction is set to OE_Ignore, then the sub-program is throwing 001287 ** an IGNORE exception. In this case jump to the address specified 001288 ** as the p2 of the calling OP_Program. */ 001289 pcx = p->aOp[pcx].p2-1; 001290 } 001291 aOp = p->aOp; 001292 aMem = p->aMem; 001293 pOp = &aOp[pcx]; 001294 break; 001295 } 001296 p->rc = pOp->p1; 001297 p->errorAction = (u8)pOp->p2; 001298 assert( pOp->p5<=4 ); 001299 if( p->rc ){ 001300 if( pOp->p3>0 && pOp->p4type==P4_NOTUSED ){ 001301 const char *zErr; 001302 assert( pOp->p3<=(p->nMem + 1 - p->nCursor) ); 001303 zErr = sqlite3ValueText(&aMem[pOp->p3], SQLITE_UTF8); 001304 sqlite3VdbeError(p, "%s", zErr); 001305 }else if( pOp->p5 ){ 001306 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 001307 "FOREIGN KEY" }; 001308 testcase( pOp->p5==1 ); 001309 testcase( pOp->p5==2 ); 001310 testcase( pOp->p5==3 ); 001311 testcase( pOp->p5==4 ); 001312 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 001313 if( pOp->p4.z ){ 001314 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 001315 } 001316 }else{ 001317 sqlite3VdbeError(p, "%s", pOp->p4.z); 001318 } 001319 pcx = (int)(pOp - aOp); 001320 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 001321 } 001322 rc = sqlite3VdbeHalt(p); 001323 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 001324 if( rc==SQLITE_BUSY ){ 001325 p->rc = SQLITE_BUSY; 001326 }else{ 001327 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 001328 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 001329 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 001330 } 001331 goto vdbe_return; 001332 } 001333 001334 /* Opcode: Integer P1 P2 * * * 001335 ** Synopsis: r[P2]=P1 001336 ** 001337 ** The 32-bit integer value P1 is written into register P2. 001338 */ 001339 case OP_Integer: { /* out2 */ 001340 pOut = out2Prerelease(p, pOp); 001341 pOut->u.i = pOp->p1; 001342 break; 001343 } 001344 001345 /* Opcode: Int64 * P2 * P4 * 001346 ** Synopsis: r[P2]=P4 001347 ** 001348 ** P4 is a pointer to a 64-bit integer value. 001349 ** Write that value into register P2. 001350 */ 001351 case OP_Int64: { /* out2 */ 001352 pOut = out2Prerelease(p, pOp); 001353 assert( pOp->p4.pI64!=0 ); 001354 pOut->u.i = *pOp->p4.pI64; 001355 break; 001356 } 001357 001358 #ifndef SQLITE_OMIT_FLOATING_POINT 001359 /* Opcode: Real * P2 * P4 * 001360 ** Synopsis: r[P2]=P4 001361 ** 001362 ** P4 is a pointer to a 64-bit floating point value. 001363 ** Write that value into register P2. 001364 */ 001365 case OP_Real: { /* same as TK_FLOAT, out2 */ 001366 pOut = out2Prerelease(p, pOp); 001367 pOut->flags = MEM_Real; 001368 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 001369 pOut->u.r = *pOp->p4.pReal; 001370 break; 001371 } 001372 #endif 001373 001374 /* Opcode: String8 * P2 * P4 * 001375 ** Synopsis: r[P2]='P4' 001376 ** 001377 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 001378 ** into a String opcode before it is executed for the first time. During 001379 ** this transformation, the length of string P4 is computed and stored 001380 ** as the P1 parameter. 001381 */ 001382 case OP_String8: { /* same as TK_STRING, out2 */ 001383 assert( pOp->p4.z!=0 ); 001384 pOut = out2Prerelease(p, pOp); 001385 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 001386 001387 #ifndef SQLITE_OMIT_UTF16 001388 if( encoding!=SQLITE_UTF8 ){ 001389 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 001390 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 001391 if( rc ) goto too_big; 001392 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 001393 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 001394 assert( VdbeMemDynamic(pOut)==0 ); 001395 pOut->szMalloc = 0; 001396 pOut->flags |= MEM_Static; 001397 if( pOp->p4type==P4_DYNAMIC ){ 001398 sqlite3DbFree(db, pOp->p4.z); 001399 } 001400 pOp->p4type = P4_DYNAMIC; 001401 pOp->p4.z = pOut->z; 001402 pOp->p1 = pOut->n; 001403 } 001404 #endif 001405 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001406 goto too_big; 001407 } 001408 pOp->opcode = OP_String; 001409 assert( rc==SQLITE_OK ); 001410 /* Fall through to the next case, OP_String */ 001411 /* no break */ deliberate_fall_through 001412 } 001413 001414 /* Opcode: String P1 P2 P3 P4 P5 001415 ** Synopsis: r[P2]='P4' (len=P1) 001416 ** 001417 ** The string value P4 of length P1 (bytes) is stored in register P2. 001418 ** 001419 ** If P3 is not zero and the content of register P3 is equal to P5, then 001420 ** the datatype of the register P2 is converted to BLOB. The content is 001421 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 001422 ** of a string, as if it had been CAST. In other words: 001423 ** 001424 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 001425 */ 001426 case OP_String: { /* out2 */ 001427 assert( pOp->p4.z!=0 ); 001428 pOut = out2Prerelease(p, pOp); 001429 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 001430 pOut->z = pOp->p4.z; 001431 pOut->n = pOp->p1; 001432 pOut->enc = encoding; 001433 UPDATE_MAX_BLOBSIZE(pOut); 001434 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 001435 if( pOp->p3>0 ){ 001436 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001437 pIn3 = &aMem[pOp->p3]; 001438 assert( pIn3->flags & MEM_Int ); 001439 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 001440 } 001441 #endif 001442 break; 001443 } 001444 001445 /* Opcode: BeginSubrtn * P2 * * * 001446 ** Synopsis: r[P2]=NULL 001447 ** 001448 ** Mark the beginning of a subroutine that can be entered in-line 001449 ** or that can be called using OP_Gosub. The subroutine should 001450 ** be terminated by an OP_Return instruction that has a P1 operand that 001451 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 001452 ** If the subroutine is entered in-line, then the OP_Return will simply 001453 ** fall through. But if the subroutine is entered using OP_Gosub, then 001454 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 001455 ** 001456 ** This routine works by loading a NULL into the P2 register. When the 001457 ** return address register contains a NULL, the OP_Return instruction is 001458 ** a no-op that simply falls through to the next instruction (assuming that 001459 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 001460 ** entered in-line, then the OP_Return will cause in-line execution to 001461 ** continue. But if the subroutine is entered via OP_Gosub, then the 001462 ** OP_Return will cause a return to the address following the OP_Gosub. 001463 ** 001464 ** This opcode is identical to OP_Null. It has a different name 001465 ** only to make the byte code easier to read and verify. 001466 */ 001467 /* Opcode: Null P1 P2 P3 * * 001468 ** Synopsis: r[P2..P3]=NULL 001469 ** 001470 ** Write a NULL into registers P2. If P3 greater than P2, then also write 001471 ** NULL into register P3 and every register in between P2 and P3. If P3 001472 ** is less than P2 (typically P3 is zero) then only register P2 is 001473 ** set to NULL. 001474 ** 001475 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 001476 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 001477 ** OP_Ne or OP_Eq. 001478 */ 001479 case OP_BeginSubrtn: 001480 case OP_Null: { /* out2 */ 001481 int cnt; 001482 u16 nullFlag; 001483 pOut = out2Prerelease(p, pOp); 001484 cnt = pOp->p3-pOp->p2; 001485 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001486 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 001487 pOut->n = 0; 001488 #ifdef SQLITE_DEBUG 001489 pOut->uTemp = 0; 001490 #endif 001491 while( cnt>0 ){ 001492 pOut++; 001493 memAboutToChange(p, pOut); 001494 sqlite3VdbeMemSetNull(pOut); 001495 pOut->flags = nullFlag; 001496 pOut->n = 0; 001497 cnt--; 001498 } 001499 break; 001500 } 001501 001502 /* Opcode: SoftNull P1 * * * * 001503 ** Synopsis: r[P1]=NULL 001504 ** 001505 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 001506 ** instruction, but do not free any string or blob memory associated with 001507 ** the register, so that if the value was a string or blob that was 001508 ** previously copied using OP_SCopy, the copies will continue to be valid. 001509 */ 001510 case OP_SoftNull: { 001511 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001512 pOut = &aMem[pOp->p1]; 001513 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 001514 break; 001515 } 001516 001517 /* Opcode: Blob P1 P2 * P4 * 001518 ** Synopsis: r[P2]=P4 (len=P1) 001519 ** 001520 ** P4 points to a blob of data P1 bytes long. Store this 001521 ** blob in register P2. If P4 is a NULL pointer, then construct 001522 ** a zero-filled blob that is P1 bytes long in P2. 001523 */ 001524 case OP_Blob: { /* out2 */ 001525 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 001526 pOut = out2Prerelease(p, pOp); 001527 if( pOp->p4.z==0 ){ 001528 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 001529 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 001530 }else{ 001531 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 001532 } 001533 pOut->enc = encoding; 001534 UPDATE_MAX_BLOBSIZE(pOut); 001535 break; 001536 } 001537 001538 /* Opcode: Variable P1 P2 * * * 001539 ** Synopsis: r[P2]=parameter(P1) 001540 ** 001541 ** Transfer the values of bound parameter P1 into register P2 001542 */ 001543 case OP_Variable: { /* out2 */ 001544 Mem *pVar; /* Value being transferred */ 001545 001546 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 001547 pVar = &p->aVar[pOp->p1 - 1]; 001548 if( sqlite3VdbeMemTooBig(pVar) ){ 001549 goto too_big; 001550 } 001551 pOut = &aMem[pOp->p2]; 001552 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 001553 memcpy(pOut, pVar, MEMCELLSIZE); 001554 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 001555 pOut->flags |= MEM_Static|MEM_FromBind; 001556 UPDATE_MAX_BLOBSIZE(pOut); 001557 break; 001558 } 001559 001560 /* Opcode: Move P1 P2 P3 * * 001561 ** Synopsis: r[P2@P3]=r[P1@P3] 001562 ** 001563 ** Move the P3 values in register P1..P1+P3-1 over into 001564 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 001565 ** left holding a NULL. It is an error for register ranges 001566 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 001567 ** for P3 to be less than 1. 001568 */ 001569 case OP_Move: { 001570 int n; /* Number of registers left to copy */ 001571 int p1; /* Register to copy from */ 001572 int p2; /* Register to copy to */ 001573 001574 n = pOp->p3; 001575 p1 = pOp->p1; 001576 p2 = pOp->p2; 001577 assert( n>0 && p1>0 && p2>0 ); 001578 assert( p1+n<=p2 || p2+n<=p1 ); 001579 001580 pIn1 = &aMem[p1]; 001581 pOut = &aMem[p2]; 001582 do{ 001583 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 001584 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 001585 assert( memIsValid(pIn1) ); 001586 memAboutToChange(p, pOut); 001587 sqlite3VdbeMemMove(pOut, pIn1); 001588 #ifdef SQLITE_DEBUG 001589 pIn1->pScopyFrom = 0; 001590 { int i; 001591 for(i=1; i<p->nMem; i++){ 001592 if( aMem[i].pScopyFrom==pIn1 ){ 001593 aMem[i].pScopyFrom = pOut; 001594 } 001595 } 001596 } 001597 #endif 001598 Deephemeralize(pOut); 001599 REGISTER_TRACE(p2++, pOut); 001600 pIn1++; 001601 pOut++; 001602 }while( --n ); 001603 break; 001604 } 001605 001606 /* Opcode: Copy P1 P2 P3 * P5 001607 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 001608 ** 001609 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 001610 ** 001611 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 001612 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 001613 ** be merged. The 0x0001 bit is used by the query planner and does not 001614 ** come into play during query execution. 001615 ** 001616 ** This instruction makes a deep copy of the value. A duplicate 001617 ** is made of any string or blob constant. See also OP_SCopy. 001618 */ 001619 case OP_Copy: { 001620 int n; 001621 001622 n = pOp->p3; 001623 pIn1 = &aMem[pOp->p1]; 001624 pOut = &aMem[pOp->p2]; 001625 assert( pOut!=pIn1 ); 001626 while( 1 ){ 001627 memAboutToChange(p, pOut); 001628 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001629 Deephemeralize(pOut); 001630 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 001631 pOut->flags &= ~MEM_Subtype; 001632 } 001633 #ifdef SQLITE_DEBUG 001634 pOut->pScopyFrom = 0; 001635 #endif 001636 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 001637 if( (n--)==0 ) break; 001638 pOut++; 001639 pIn1++; 001640 } 001641 break; 001642 } 001643 001644 /* Opcode: SCopy P1 P2 * * * 001645 ** Synopsis: r[P2]=r[P1] 001646 ** 001647 ** Make a shallow copy of register P1 into register P2. 001648 ** 001649 ** This instruction makes a shallow copy of the value. If the value 001650 ** is a string or blob, then the copy is only a pointer to the 001651 ** original and hence if the original changes so will the copy. 001652 ** Worse, if the original is deallocated, the copy becomes invalid. 001653 ** Thus the program must guarantee that the original will not change 001654 ** during the lifetime of the copy. Use OP_Copy to make a complete 001655 ** copy. 001656 */ 001657 case OP_SCopy: { /* out2 */ 001658 pIn1 = &aMem[pOp->p1]; 001659 pOut = &aMem[pOp->p2]; 001660 assert( pOut!=pIn1 ); 001661 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001662 #ifdef SQLITE_DEBUG 001663 pOut->pScopyFrom = pIn1; 001664 pOut->mScopyFlags = pIn1->flags; 001665 #endif 001666 break; 001667 } 001668 001669 /* Opcode: IntCopy P1 P2 * * * 001670 ** Synopsis: r[P2]=r[P1] 001671 ** 001672 ** Transfer the integer value held in register P1 into register P2. 001673 ** 001674 ** This is an optimized version of SCopy that works only for integer 001675 ** values. 001676 */ 001677 case OP_IntCopy: { /* out2 */ 001678 pIn1 = &aMem[pOp->p1]; 001679 assert( (pIn1->flags & MEM_Int)!=0 ); 001680 pOut = &aMem[pOp->p2]; 001681 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 001682 break; 001683 } 001684 001685 /* Opcode: FkCheck * * * * * 001686 ** 001687 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 001688 ** foreign key constraint violations. If there are no foreign key 001689 ** constraint violations, this is a no-op. 001690 ** 001691 ** FK constraint violations are also checked when the prepared statement 001692 ** exits. This opcode is used to raise foreign key constraint errors prior 001693 ** to returning results such as a row change count or the result of a 001694 ** RETURNING clause. 001695 */ 001696 case OP_FkCheck: { 001697 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 001698 goto abort_due_to_error; 001699 } 001700 break; 001701 } 001702 001703 /* Opcode: ResultRow P1 P2 * * * 001704 ** Synopsis: output=r[P1@P2] 001705 ** 001706 ** The registers P1 through P1+P2-1 contain a single row of 001707 ** results. This opcode causes the sqlite3_step() call to terminate 001708 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 001709 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 001710 ** the result row. 001711 */ 001712 case OP_ResultRow: { 001713 assert( p->nResColumn==pOp->p2 ); 001714 assert( pOp->p1>0 || CORRUPT_DB ); 001715 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 001716 001717 p->cacheCtr = (p->cacheCtr + 2)|1; 001718 p->pResultRow = &aMem[pOp->p1]; 001719 #ifdef SQLITE_DEBUG 001720 { 001721 Mem *pMem = p->pResultRow; 001722 int i; 001723 for(i=0; i<pOp->p2; i++){ 001724 assert( memIsValid(&pMem[i]) ); 001725 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 001726 /* The registers in the result will not be used again when the 001727 ** prepared statement restarts. This is because sqlite3_column() 001728 ** APIs might have caused type conversions of made other changes to 001729 ** the register values. Therefore, we can go ahead and break any 001730 ** OP_SCopy dependencies. */ 001731 pMem[i].pScopyFrom = 0; 001732 } 001733 } 001734 #endif 001735 if( db->mallocFailed ) goto no_mem; 001736 if( db->mTrace & SQLITE_TRACE_ROW ){ 001737 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 001738 } 001739 p->pc = (int)(pOp - aOp) + 1; 001740 rc = SQLITE_ROW; 001741 goto vdbe_return; 001742 } 001743 001744 /* Opcode: Concat P1 P2 P3 * * 001745 ** Synopsis: r[P3]=r[P2]+r[P1] 001746 ** 001747 ** Add the text in register P1 onto the end of the text in 001748 ** register P2 and store the result in register P3. 001749 ** If either the P1 or P2 text are NULL then store NULL in P3. 001750 ** 001751 ** P3 = P2 || P1 001752 ** 001753 ** It is illegal for P1 and P3 to be the same register. Sometimes, 001754 ** if P3 is the same register as P2, the implementation is able 001755 ** to avoid a memcpy(). 001756 */ 001757 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 001758 i64 nByte; /* Total size of the output string or blob */ 001759 u16 flags1; /* Initial flags for P1 */ 001760 u16 flags2; /* Initial flags for P2 */ 001761 001762 pIn1 = &aMem[pOp->p1]; 001763 pIn2 = &aMem[pOp->p2]; 001764 pOut = &aMem[pOp->p3]; 001765 testcase( pOut==pIn2 ); 001766 assert( pIn1!=pOut ); 001767 flags1 = pIn1->flags; 001768 testcase( flags1 & MEM_Null ); 001769 testcase( pIn2->flags & MEM_Null ); 001770 if( (flags1 | pIn2->flags) & MEM_Null ){ 001771 sqlite3VdbeMemSetNull(pOut); 001772 break; 001773 } 001774 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 001775 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 001776 flags1 = pIn1->flags & ~MEM_Str; 001777 }else if( (flags1 & MEM_Zero)!=0 ){ 001778 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 001779 flags1 = pIn1->flags & ~MEM_Str; 001780 } 001781 flags2 = pIn2->flags; 001782 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 001783 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 001784 flags2 = pIn2->flags & ~MEM_Str; 001785 }else if( (flags2 & MEM_Zero)!=0 ){ 001786 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 001787 flags2 = pIn2->flags & ~MEM_Str; 001788 } 001789 nByte = pIn1->n + pIn2->n; 001790 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001791 goto too_big; 001792 } 001793 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 001794 goto no_mem; 001795 } 001796 MemSetTypeFlag(pOut, MEM_Str); 001797 if( pOut!=pIn2 ){ 001798 memcpy(pOut->z, pIn2->z, pIn2->n); 001799 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 001800 pIn2->flags = flags2; 001801 } 001802 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 001803 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 001804 pIn1->flags = flags1; 001805 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 001806 pOut->z[nByte]=0; 001807 pOut->z[nByte+1] = 0; 001808 pOut->flags |= MEM_Term; 001809 pOut->n = (int)nByte; 001810 pOut->enc = encoding; 001811 UPDATE_MAX_BLOBSIZE(pOut); 001812 break; 001813 } 001814 001815 /* Opcode: Add P1 P2 P3 * * 001816 ** Synopsis: r[P3]=r[P1]+r[P2] 001817 ** 001818 ** Add the value in register P1 to the value in register P2 001819 ** and store the result in register P3. 001820 ** If either input is NULL, the result is NULL. 001821 */ 001822 /* Opcode: Multiply P1 P2 P3 * * 001823 ** Synopsis: r[P3]=r[P1]*r[P2] 001824 ** 001825 ** 001826 ** Multiply the value in register P1 by the value in register P2 001827 ** and store the result in register P3. 001828 ** If either input is NULL, the result is NULL. 001829 */ 001830 /* Opcode: Subtract P1 P2 P3 * * 001831 ** Synopsis: r[P3]=r[P2]-r[P1] 001832 ** 001833 ** Subtract the value in register P1 from the value in register P2 001834 ** and store the result in register P3. 001835 ** If either input is NULL, the result is NULL. 001836 */ 001837 /* Opcode: Divide P1 P2 P3 * * 001838 ** Synopsis: r[P3]=r[P2]/r[P1] 001839 ** 001840 ** Divide the value in register P1 by the value in register P2 001841 ** and store the result in register P3 (P3=P2/P1). If the value in 001842 ** register P1 is zero, then the result is NULL. If either input is 001843 ** NULL, the result is NULL. 001844 */ 001845 /* Opcode: Remainder P1 P2 P3 * * 001846 ** Synopsis: r[P3]=r[P2]%r[P1] 001847 ** 001848 ** Compute the remainder after integer register P2 is divided by 001849 ** register P1 and store the result in register P3. 001850 ** If the value in register P1 is zero the result is NULL. 001851 ** If either operand is NULL, the result is NULL. 001852 */ 001853 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 001854 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 001855 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 001856 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 001857 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 001858 u16 type1; /* Numeric type of left operand */ 001859 u16 type2; /* Numeric type of right operand */ 001860 i64 iA; /* Integer value of left operand */ 001861 i64 iB; /* Integer value of right operand */ 001862 double rA; /* Real value of left operand */ 001863 double rB; /* Real value of right operand */ 001864 001865 pIn1 = &aMem[pOp->p1]; 001866 type1 = pIn1->flags; 001867 pIn2 = &aMem[pOp->p2]; 001868 type2 = pIn2->flags; 001869 pOut = &aMem[pOp->p3]; 001870 if( (type1 & type2 & MEM_Int)!=0 ){ 001871 int_math: 001872 iA = pIn1->u.i; 001873 iB = pIn2->u.i; 001874 switch( pOp->opcode ){ 001875 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 001876 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 001877 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 001878 case OP_Divide: { 001879 if( iA==0 ) goto arithmetic_result_is_null; 001880 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 001881 iB /= iA; 001882 break; 001883 } 001884 default: { 001885 if( iA==0 ) goto arithmetic_result_is_null; 001886 if( iA==-1 ) iA = 1; 001887 iB %= iA; 001888 break; 001889 } 001890 } 001891 pOut->u.i = iB; 001892 MemSetTypeFlag(pOut, MEM_Int); 001893 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 001894 goto arithmetic_result_is_null; 001895 }else{ 001896 type1 = numericType(pIn1); 001897 type2 = numericType(pIn2); 001898 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 001899 fp_math: 001900 rA = sqlite3VdbeRealValue(pIn1); 001901 rB = sqlite3VdbeRealValue(pIn2); 001902 switch( pOp->opcode ){ 001903 case OP_Add: rB += rA; break; 001904 case OP_Subtract: rB -= rA; break; 001905 case OP_Multiply: rB *= rA; break; 001906 case OP_Divide: { 001907 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 001908 if( rA==(double)0 ) goto arithmetic_result_is_null; 001909 rB /= rA; 001910 break; 001911 } 001912 default: { 001913 iA = sqlite3VdbeIntValue(pIn1); 001914 iB = sqlite3VdbeIntValue(pIn2); 001915 if( iA==0 ) goto arithmetic_result_is_null; 001916 if( iA==-1 ) iA = 1; 001917 rB = (double)(iB % iA); 001918 break; 001919 } 001920 } 001921 #ifdef SQLITE_OMIT_FLOATING_POINT 001922 pOut->u.i = rB; 001923 MemSetTypeFlag(pOut, MEM_Int); 001924 #else 001925 if( sqlite3IsNaN(rB) ){ 001926 goto arithmetic_result_is_null; 001927 } 001928 pOut->u.r = rB; 001929 MemSetTypeFlag(pOut, MEM_Real); 001930 #endif 001931 } 001932 break; 001933 001934 arithmetic_result_is_null: 001935 sqlite3VdbeMemSetNull(pOut); 001936 break; 001937 } 001938 001939 /* Opcode: CollSeq P1 * * P4 001940 ** 001941 ** P4 is a pointer to a CollSeq object. If the next call to a user function 001942 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 001943 ** be returned. This is used by the built-in min(), max() and nullif() 001944 ** functions. 001945 ** 001946 ** If P1 is not zero, then it is a register that a subsequent min() or 001947 ** max() aggregate will set to 1 if the current row is not the minimum or 001948 ** maximum. The P1 register is initialized to 0 by this instruction. 001949 ** 001950 ** The interface used by the implementation of the aforementioned functions 001951 ** to retrieve the collation sequence set by this opcode is not available 001952 ** publicly. Only built-in functions have access to this feature. 001953 */ 001954 case OP_CollSeq: { 001955 assert( pOp->p4type==P4_COLLSEQ ); 001956 if( pOp->p1 ){ 001957 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 001958 } 001959 break; 001960 } 001961 001962 /* Opcode: BitAnd P1 P2 P3 * * 001963 ** Synopsis: r[P3]=r[P1]&r[P2] 001964 ** 001965 ** Take the bit-wise AND of the values in register P1 and P2 and 001966 ** store the result in register P3. 001967 ** If either input is NULL, the result is NULL. 001968 */ 001969 /* Opcode: BitOr P1 P2 P3 * * 001970 ** Synopsis: r[P3]=r[P1]|r[P2] 001971 ** 001972 ** Take the bit-wise OR of the values in register P1 and P2 and 001973 ** store the result in register P3. 001974 ** If either input is NULL, the result is NULL. 001975 */ 001976 /* Opcode: ShiftLeft P1 P2 P3 * * 001977 ** Synopsis: r[P3]=r[P2]<<r[P1] 001978 ** 001979 ** Shift the integer value in register P2 to the left by the 001980 ** number of bits specified by the integer in register P1. 001981 ** Store the result in register P3. 001982 ** If either input is NULL, the result is NULL. 001983 */ 001984 /* Opcode: ShiftRight P1 P2 P3 * * 001985 ** Synopsis: r[P3]=r[P2]>>r[P1] 001986 ** 001987 ** Shift the integer value in register P2 to the right by the 001988 ** number of bits specified by the integer in register P1. 001989 ** Store the result in register P3. 001990 ** If either input is NULL, the result is NULL. 001991 */ 001992 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 001993 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 001994 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 001995 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 001996 i64 iA; 001997 u64 uA; 001998 i64 iB; 001999 u8 op; 002000 002001 pIn1 = &aMem[pOp->p1]; 002002 pIn2 = &aMem[pOp->p2]; 002003 pOut = &aMem[pOp->p3]; 002004 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 002005 sqlite3VdbeMemSetNull(pOut); 002006 break; 002007 } 002008 iA = sqlite3VdbeIntValue(pIn2); 002009 iB = sqlite3VdbeIntValue(pIn1); 002010 op = pOp->opcode; 002011 if( op==OP_BitAnd ){ 002012 iA &= iB; 002013 }else if( op==OP_BitOr ){ 002014 iA |= iB; 002015 }else if( iB!=0 ){ 002016 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 002017 002018 /* If shifting by a negative amount, shift in the other direction */ 002019 if( iB<0 ){ 002020 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 002021 op = 2*OP_ShiftLeft + 1 - op; 002022 iB = iB>(-64) ? -iB : 64; 002023 } 002024 002025 if( iB>=64 ){ 002026 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 002027 }else{ 002028 memcpy(&uA, &iA, sizeof(uA)); 002029 if( op==OP_ShiftLeft ){ 002030 uA <<= iB; 002031 }else{ 002032 uA >>= iB; 002033 /* Sign-extend on a right shift of a negative number */ 002034 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 002035 } 002036 memcpy(&iA, &uA, sizeof(iA)); 002037 } 002038 } 002039 pOut->u.i = iA; 002040 MemSetTypeFlag(pOut, MEM_Int); 002041 break; 002042 } 002043 002044 /* Opcode: AddImm P1 P2 * * * 002045 ** Synopsis: r[P1]=r[P1]+P2 002046 ** 002047 ** Add the constant P2 to the value in register P1. 002048 ** The result is always an integer. 002049 ** 002050 ** To force any register to be an integer, just add 0. 002051 */ 002052 case OP_AddImm: { /* in1 */ 002053 pIn1 = &aMem[pOp->p1]; 002054 memAboutToChange(p, pIn1); 002055 sqlite3VdbeMemIntegerify(pIn1); 002056 *(u64*)&pIn1->u.i += (u64)pOp->p2; 002057 break; 002058 } 002059 002060 /* Opcode: MustBeInt P1 P2 * * * 002061 ** 002062 ** Force the value in register P1 to be an integer. If the value 002063 ** in P1 is not an integer and cannot be converted into an integer 002064 ** without data loss, then jump immediately to P2, or if P2==0 002065 ** raise an SQLITE_MISMATCH exception. 002066 */ 002067 case OP_MustBeInt: { /* jump0, in1 */ 002068 pIn1 = &aMem[pOp->p1]; 002069 if( (pIn1->flags & MEM_Int)==0 ){ 002070 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 002071 if( (pIn1->flags & MEM_Int)==0 ){ 002072 VdbeBranchTaken(1, 2); 002073 if( pOp->p2==0 ){ 002074 rc = SQLITE_MISMATCH; 002075 goto abort_due_to_error; 002076 }else{ 002077 goto jump_to_p2; 002078 } 002079 } 002080 } 002081 VdbeBranchTaken(0, 2); 002082 MemSetTypeFlag(pIn1, MEM_Int); 002083 break; 002084 } 002085 002086 #ifndef SQLITE_OMIT_FLOATING_POINT 002087 /* Opcode: RealAffinity P1 * * * * 002088 ** 002089 ** If register P1 holds an integer convert it to a real value. 002090 ** 002091 ** This opcode is used when extracting information from a column that 002092 ** has REAL affinity. Such column values may still be stored as 002093 ** integers, for space efficiency, but after extraction we want them 002094 ** to have only a real value. 002095 */ 002096 case OP_RealAffinity: { /* in1 */ 002097 pIn1 = &aMem[pOp->p1]; 002098 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 002099 testcase( pIn1->flags & MEM_Int ); 002100 testcase( pIn1->flags & MEM_IntReal ); 002101 sqlite3VdbeMemRealify(pIn1); 002102 REGISTER_TRACE(pOp->p1, pIn1); 002103 } 002104 break; 002105 } 002106 #endif 002107 002108 #if !defined(SQLITE_OMIT_CAST) || !defined(SQLITE_OMIT_ANALYZE) 002109 /* Opcode: Cast P1 P2 * * * 002110 ** Synopsis: affinity(r[P1]) 002111 ** 002112 ** Force the value in register P1 to be the type defined by P2. 002113 ** 002114 ** <ul> 002115 ** <li> P2=='A' → BLOB 002116 ** <li> P2=='B' → TEXT 002117 ** <li> P2=='C' → NUMERIC 002118 ** <li> P2=='D' → INTEGER 002119 ** <li> P2=='E' → REAL 002120 ** </ul> 002121 ** 002122 ** A NULL value is not changed by this routine. It remains NULL. 002123 */ 002124 case OP_Cast: { /* in1 */ 002125 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 002126 testcase( pOp->p2==SQLITE_AFF_TEXT ); 002127 testcase( pOp->p2==SQLITE_AFF_BLOB ); 002128 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 002129 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 002130 testcase( pOp->p2==SQLITE_AFF_REAL ); 002131 pIn1 = &aMem[pOp->p1]; 002132 memAboutToChange(p, pIn1); 002133 rc = ExpandBlob(pIn1); 002134 if( rc ) goto abort_due_to_error; 002135 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 002136 if( rc ) goto abort_due_to_error; 002137 UPDATE_MAX_BLOBSIZE(pIn1); 002138 REGISTER_TRACE(pOp->p1, pIn1); 002139 break; 002140 } 002141 #endif /* SQLITE_OMIT_CAST */ 002142 002143 /* Opcode: Eq P1 P2 P3 P4 P5 002144 ** Synopsis: IF r[P3]==r[P1] 002145 ** 002146 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 002147 ** jump to address P2. 002148 ** 002149 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002150 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002151 ** to coerce both inputs according to this affinity before the 002152 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002153 ** affinity is used. Note that the affinity conversions are stored 002154 ** back into the input registers P1 and P3. So this opcode can cause 002155 ** persistent changes to registers P1 and P3. 002156 ** 002157 ** Once any conversions have taken place, and neither value is NULL, 002158 ** the values are compared. If both values are blobs then memcmp() is 002159 ** used to determine the results of the comparison. If both values 002160 ** are text, then the appropriate collating function specified in 002161 ** P4 is used to do the comparison. If P4 is not specified then 002162 ** memcmp() is used to compare text string. If both values are 002163 ** numeric, then a numeric comparison is used. If the two values 002164 ** are of different types, then numbers are considered less than 002165 ** strings and strings are considered less than blobs. 002166 ** 002167 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 002168 ** true or false and is never NULL. If both operands are NULL then the result 002169 ** of comparison is true. If either operand is NULL then the result is false. 002170 ** If neither operand is NULL the result is the same as it would be if 002171 ** the SQLITE_NULLEQ flag were omitted from P5. 002172 ** 002173 ** This opcode saves the result of comparison for use by the new 002174 ** OP_Jump opcode. 002175 */ 002176 /* Opcode: Ne P1 P2 P3 P4 P5 002177 ** Synopsis: IF r[P3]!=r[P1] 002178 ** 002179 ** This works just like the Eq opcode except that the jump is taken if 002180 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 002181 ** additional information. 002182 */ 002183 /* Opcode: Lt P1 P2 P3 P4 P5 002184 ** Synopsis: IF r[P3]<r[P1] 002185 ** 002186 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 002187 ** jump to address P2. 002188 ** 002189 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 002190 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 002191 ** bit is clear then fall through if either operand is NULL. 002192 ** 002193 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002194 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002195 ** to coerce both inputs according to this affinity before the 002196 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002197 ** affinity is used. Note that the affinity conversions are stored 002198 ** back into the input registers P1 and P3. So this opcode can cause 002199 ** persistent changes to registers P1 and P3. 002200 ** 002201 ** Once any conversions have taken place, and neither value is NULL, 002202 ** the values are compared. If both values are blobs then memcmp() is 002203 ** used to determine the results of the comparison. If both values 002204 ** are text, then the appropriate collating function specified in 002205 ** P4 is used to do the comparison. If P4 is not specified then 002206 ** memcmp() is used to compare text string. If both values are 002207 ** numeric, then a numeric comparison is used. If the two values 002208 ** are of different types, then numbers are considered less than 002209 ** strings and strings are considered less than blobs. 002210 ** 002211 ** This opcode saves the result of comparison for use by the new 002212 ** OP_Jump opcode. 002213 */ 002214 /* Opcode: Le P1 P2 P3 P4 P5 002215 ** Synopsis: IF r[P3]<=r[P1] 002216 ** 002217 ** This works just like the Lt opcode except that the jump is taken if 002218 ** the content of register P3 is less than or equal to the content of 002219 ** register P1. See the Lt opcode for additional information. 002220 */ 002221 /* Opcode: Gt P1 P2 P3 P4 P5 002222 ** Synopsis: IF r[P3]>r[P1] 002223 ** 002224 ** This works just like the Lt opcode except that the jump is taken if 002225 ** the content of register P3 is greater than the content of 002226 ** register P1. See the Lt opcode for additional information. 002227 */ 002228 /* Opcode: Ge P1 P2 P3 P4 P5 002229 ** Synopsis: IF r[P3]>=r[P1] 002230 ** 002231 ** This works just like the Lt opcode except that the jump is taken if 002232 ** the content of register P3 is greater than or equal to the content of 002233 ** register P1. See the Lt opcode for additional information. 002234 */ 002235 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 002236 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 002237 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 002238 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 002239 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 002240 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 002241 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 002242 char affinity; /* Affinity to use for comparison */ 002243 u16 flags1; /* Copy of initial value of pIn1->flags */ 002244 u16 flags3; /* Copy of initial value of pIn3->flags */ 002245 002246 pIn1 = &aMem[pOp->p1]; 002247 pIn3 = &aMem[pOp->p3]; 002248 flags1 = pIn1->flags; 002249 flags3 = pIn3->flags; 002250 if( (flags1 & flags3 & MEM_Int)!=0 ){ 002251 /* Common case of comparison of two integers */ 002252 if( pIn3->u.i > pIn1->u.i ){ 002253 if( sqlite3aGTb[pOp->opcode] ){ 002254 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002255 goto jump_to_p2; 002256 } 002257 iCompare = +1; 002258 VVA_ONLY( iCompareIsInit = 1; ) 002259 }else if( pIn3->u.i < pIn1->u.i ){ 002260 if( sqlite3aLTb[pOp->opcode] ){ 002261 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002262 goto jump_to_p2; 002263 } 002264 iCompare = -1; 002265 VVA_ONLY( iCompareIsInit = 1; ) 002266 }else{ 002267 if( sqlite3aEQb[pOp->opcode] ){ 002268 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002269 goto jump_to_p2; 002270 } 002271 iCompare = 0; 002272 VVA_ONLY( iCompareIsInit = 1; ) 002273 } 002274 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002275 break; 002276 } 002277 if( (flags1 | flags3)&MEM_Null ){ 002278 /* One or both operands are NULL */ 002279 if( pOp->p5 & SQLITE_NULLEQ ){ 002280 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 002281 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 002282 ** or not both operands are null. 002283 */ 002284 assert( (flags1 & MEM_Cleared)==0 ); 002285 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 002286 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 002287 if( (flags1&flags3&MEM_Null)!=0 002288 && (flags3&MEM_Cleared)==0 002289 ){ 002290 res = 0; /* Operands are equal */ 002291 }else{ 002292 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 002293 } 002294 }else{ 002295 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 002296 ** then the result is always NULL. 002297 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 002298 */ 002299 VdbeBranchTaken(2,3); 002300 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 002301 goto jump_to_p2; 002302 } 002303 iCompare = 1; /* Operands are not equal */ 002304 VVA_ONLY( iCompareIsInit = 1; ) 002305 break; 002306 } 002307 }else{ 002308 /* Neither operand is NULL and we couldn't do the special high-speed 002309 ** integer comparison case. So do a general-case comparison. */ 002310 affinity = pOp->p5 & SQLITE_AFF_MASK; 002311 if( affinity>=SQLITE_AFF_NUMERIC ){ 002312 if( (flags1 | flags3)&MEM_Str ){ 002313 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002314 applyNumericAffinity(pIn1,0); 002315 assert( flags3==pIn3->flags || CORRUPT_DB ); 002316 flags3 = pIn3->flags; 002317 } 002318 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002319 applyNumericAffinity(pIn3,0); 002320 } 002321 } 002322 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){ 002323 if( (flags1 & MEM_Str)!=0 ){ 002324 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002325 }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002326 testcase( pIn1->flags & MEM_Int ); 002327 testcase( pIn1->flags & MEM_Real ); 002328 testcase( pIn1->flags & MEM_IntReal ); 002329 sqlite3VdbeMemStringify(pIn1, encoding, 1); 002330 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 002331 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 002332 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 002333 } 002334 if( (flags3 & MEM_Str)!=0 ){ 002335 pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002336 }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002337 testcase( pIn3->flags & MEM_Int ); 002338 testcase( pIn3->flags & MEM_Real ); 002339 testcase( pIn3->flags & MEM_IntReal ); 002340 sqlite3VdbeMemStringify(pIn3, encoding, 1); 002341 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 002342 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 002343 } 002344 } 002345 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 002346 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 002347 } 002348 002349 /* At this point, res is negative, zero, or positive if reg[P1] is 002350 ** less than, equal to, or greater than reg[P3], respectively. Compute 002351 ** the answer to this operator in res2, depending on what the comparison 002352 ** operator actually is. The next block of code depends on the fact 002353 ** that the 6 comparison operators are consecutive integers in this 002354 ** order: NE, EQ, GT, LE, LT, GE */ 002355 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 002356 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 002357 if( res<0 ){ 002358 res2 = sqlite3aLTb[pOp->opcode]; 002359 }else if( res==0 ){ 002360 res2 = sqlite3aEQb[pOp->opcode]; 002361 }else{ 002362 res2 = sqlite3aGTb[pOp->opcode]; 002363 } 002364 iCompare = res; 002365 VVA_ONLY( iCompareIsInit = 1; ) 002366 002367 /* Undo any changes made by applyAffinity() to the input registers. */ 002368 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 002369 pIn3->flags = flags3; 002370 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 002371 pIn1->flags = flags1; 002372 002373 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002374 if( res2 ){ 002375 goto jump_to_p2; 002376 } 002377 break; 002378 } 002379 002380 /* Opcode: ElseEq * P2 * * * 002381 ** 002382 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 002383 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 002384 ** opcodes are allowed to occur between this instruction and the previous 002385 ** OP_Lt or OP_Gt. 002386 ** 002387 ** If the result of an OP_Eq comparison on the same two operands as 002388 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If 002389 ** the result of an OP_Eq comparison on the two previous operands 002390 ** would have been false or NULL, then fall through. 002391 */ 002392 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 002393 002394 #ifdef SQLITE_DEBUG 002395 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 002396 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 002397 int iAddr; 002398 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 002399 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 002400 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 002401 break; 002402 } 002403 #endif /* SQLITE_DEBUG */ 002404 assert( iCompareIsInit ); 002405 VdbeBranchTaken(iCompare==0, 2); 002406 if( iCompare==0 ) goto jump_to_p2; 002407 break; 002408 } 002409 002410 002411 /* Opcode: Permutation * * * P4 * 002412 ** 002413 ** Set the permutation used by the OP_Compare operator in the next 002414 ** instruction. The permutation is stored in the P4 operand. 002415 ** 002416 ** The permutation is only valid for the next opcode which must be 002417 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 002418 ** 002419 ** The first integer in the P4 integer array is the length of the array 002420 ** and does not become part of the permutation. 002421 */ 002422 case OP_Permutation: { 002423 assert( pOp->p4type==P4_INTARRAY ); 002424 assert( pOp->p4.ai ); 002425 assert( pOp[1].opcode==OP_Compare ); 002426 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 002427 break; 002428 } 002429 002430 /* Opcode: Compare P1 P2 P3 P4 P5 002431 ** Synopsis: r[P1@P3] <-> r[P2@P3] 002432 ** 002433 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 002434 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 002435 ** the comparison for use by the next OP_Jump instruct. 002436 ** 002437 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 002438 ** determined by the most recent OP_Permutation operator. If the 002439 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 002440 ** order. 002441 ** 002442 ** P4 is a KeyInfo structure that defines collating sequences and sort 002443 ** orders for the comparison. The permutation applies to registers 002444 ** only. The KeyInfo elements are used sequentially. 002445 ** 002446 ** The comparison is a sort comparison, so NULLs compare equal, 002447 ** NULLs are less than numbers, numbers are less than strings, 002448 ** and strings are less than blobs. 002449 ** 002450 ** This opcode must be immediately followed by an OP_Jump opcode. 002451 */ 002452 case OP_Compare: { 002453 int n; 002454 int i; 002455 int p1; 002456 int p2; 002457 const KeyInfo *pKeyInfo; 002458 u32 idx; 002459 CollSeq *pColl; /* Collating sequence to use on this term */ 002460 int bRev; /* True for DESCENDING sort order */ 002461 u32 *aPermute; /* The permutation */ 002462 002463 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 002464 aPermute = 0; 002465 }else{ 002466 assert( pOp>aOp ); 002467 assert( pOp[-1].opcode==OP_Permutation ); 002468 assert( pOp[-1].p4type==P4_INTARRAY ); 002469 aPermute = pOp[-1].p4.ai + 1; 002470 assert( aPermute!=0 ); 002471 } 002472 n = pOp->p3; 002473 pKeyInfo = pOp->p4.pKeyInfo; 002474 assert( n>0 ); 002475 assert( pKeyInfo!=0 ); 002476 p1 = pOp->p1; 002477 p2 = pOp->p2; 002478 #ifdef SQLITE_DEBUG 002479 if( aPermute ){ 002480 int k, mx = 0; 002481 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 002482 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 002483 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 002484 }else{ 002485 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 002486 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 002487 } 002488 #endif /* SQLITE_DEBUG */ 002489 for(i=0; i<n; i++){ 002490 idx = aPermute ? aPermute[i] : (u32)i; 002491 assert( memIsValid(&aMem[p1+idx]) ); 002492 assert( memIsValid(&aMem[p2+idx]) ); 002493 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 002494 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 002495 assert( i<pKeyInfo->nKeyField ); 002496 pColl = pKeyInfo->aColl[i]; 002497 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 002498 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 002499 VVA_ONLY( iCompareIsInit = 1; ) 002500 if( iCompare ){ 002501 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 002502 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 002503 ){ 002504 iCompare = -iCompare; 002505 } 002506 if( bRev ) iCompare = -iCompare; 002507 break; 002508 } 002509 } 002510 assert( pOp[1].opcode==OP_Jump ); 002511 break; 002512 } 002513 002514 /* Opcode: Jump P1 P2 P3 * * 002515 ** 002516 ** Jump to the instruction at address P1, P2, or P3 depending on whether 002517 ** in the most recent OP_Compare instruction the P1 vector was less than, 002518 ** equal to, or greater than the P2 vector, respectively. 002519 ** 002520 ** This opcode must immediately follow an OP_Compare opcode. 002521 */ 002522 case OP_Jump: { /* jump */ 002523 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 002524 assert( iCompareIsInit ); 002525 if( iCompare<0 ){ 002526 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 002527 }else if( iCompare==0 ){ 002528 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 002529 }else{ 002530 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 002531 } 002532 break; 002533 } 002534 002535 /* Opcode: And P1 P2 P3 * * 002536 ** Synopsis: r[P3]=(r[P1] && r[P2]) 002537 ** 002538 ** Take the logical AND of the values in registers P1 and P2 and 002539 ** write the result into register P3. 002540 ** 002541 ** If either P1 or P2 is 0 (false) then the result is 0 even if 002542 ** the other input is NULL. A NULL and true or two NULLs give 002543 ** a NULL output. 002544 */ 002545 /* Opcode: Or P1 P2 P3 * * 002546 ** Synopsis: r[P3]=(r[P1] || r[P2]) 002547 ** 002548 ** Take the logical OR of the values in register P1 and P2 and 002549 ** store the answer in register P3. 002550 ** 002551 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 002552 ** even if the other input is NULL. A NULL and false or two NULLs 002553 ** give a NULL output. 002554 */ 002555 case OP_And: /* same as TK_AND, in1, in2, out3 */ 002556 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 002557 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002558 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002559 002560 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 002561 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 002562 if( pOp->opcode==OP_And ){ 002563 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 002564 v1 = and_logic[v1*3+v2]; 002565 }else{ 002566 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 002567 v1 = or_logic[v1*3+v2]; 002568 } 002569 pOut = &aMem[pOp->p3]; 002570 if( v1==2 ){ 002571 MemSetTypeFlag(pOut, MEM_Null); 002572 }else{ 002573 pOut->u.i = v1; 002574 MemSetTypeFlag(pOut, MEM_Int); 002575 } 002576 break; 002577 } 002578 002579 /* Opcode: IsTrue P1 P2 P3 P4 * 002580 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 002581 ** 002582 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 002583 ** IS NOT FALSE operators. 002584 ** 002585 ** Interpret the value in register P1 as a boolean value. Store that 002586 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 002587 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 002588 ** is 1. 002589 ** 002590 ** The logic is summarized like this: 002591 ** 002592 ** <ul> 002593 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 002594 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 002595 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 002596 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 002597 ** </ul> 002598 */ 002599 case OP_IsTrue: { /* in1, out2 */ 002600 assert( pOp->p4type==P4_INT32 ); 002601 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 002602 assert( pOp->p3==0 || pOp->p3==1 ); 002603 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 002604 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 002605 break; 002606 } 002607 002608 /* Opcode: Not P1 P2 * * * 002609 ** Synopsis: r[P2]= !r[P1] 002610 ** 002611 ** Interpret the value in register P1 as a boolean value. Store the 002612 ** boolean complement in register P2. If the value in register P1 is 002613 ** NULL, then a NULL is stored in P2. 002614 */ 002615 case OP_Not: { /* same as TK_NOT, in1, out2 */ 002616 pIn1 = &aMem[pOp->p1]; 002617 pOut = &aMem[pOp->p2]; 002618 if( (pIn1->flags & MEM_Null)==0 ){ 002619 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 002620 }else{ 002621 sqlite3VdbeMemSetNull(pOut); 002622 } 002623 break; 002624 } 002625 002626 /* Opcode: BitNot P1 P2 * * * 002627 ** Synopsis: r[P2]= ~r[P1] 002628 ** 002629 ** Interpret the content of register P1 as an integer. Store the 002630 ** ones-complement of the P1 value into register P2. If P1 holds 002631 ** a NULL then store a NULL in P2. 002632 */ 002633 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 002634 pIn1 = &aMem[pOp->p1]; 002635 pOut = &aMem[pOp->p2]; 002636 sqlite3VdbeMemSetNull(pOut); 002637 if( (pIn1->flags & MEM_Null)==0 ){ 002638 pOut->flags = MEM_Int; 002639 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 002640 } 002641 break; 002642 } 002643 002644 /* Opcode: Once P1 P2 * * * 002645 ** 002646 ** Fall through to the next instruction the first time this opcode is 002647 ** encountered on each invocation of the byte-code program. Jump to P2 002648 ** on the second and all subsequent encounters during the same invocation. 002649 ** 002650 ** Top-level programs determine first invocation by comparing the P1 002651 ** operand against the P1 operand on the OP_Init opcode at the beginning 002652 ** of the program. If the P1 values differ, then fall through and make 002653 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 002654 ** the same then take the jump. 002655 ** 002656 ** For subprograms, there is a bitmask in the VdbeFrame that determines 002657 ** whether or not the jump should be taken. The bitmask is necessary 002658 ** because the self-altering code trick does not work for recursive 002659 ** triggers. 002660 */ 002661 case OP_Once: { /* jump */ 002662 u32 iAddr; /* Address of this instruction */ 002663 assert( p->aOp[0].opcode==OP_Init ); 002664 if( p->pFrame ){ 002665 iAddr = (int)(pOp - p->aOp); 002666 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 002667 VdbeBranchTaken(1, 2); 002668 goto jump_to_p2; 002669 } 002670 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 002671 }else{ 002672 if( p->aOp[0].p1==pOp->p1 ){ 002673 VdbeBranchTaken(1, 2); 002674 goto jump_to_p2; 002675 } 002676 } 002677 VdbeBranchTaken(0, 2); 002678 pOp->p1 = p->aOp[0].p1; 002679 break; 002680 } 002681 002682 /* Opcode: If P1 P2 P3 * * 002683 ** 002684 ** Jump to P2 if the value in register P1 is true. The value 002685 ** is considered true if it is numeric and non-zero. If the value 002686 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002687 */ 002688 case OP_If: { /* jump, in1 */ 002689 int c; 002690 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 002691 VdbeBranchTaken(c!=0, 2); 002692 if( c ) goto jump_to_p2; 002693 break; 002694 } 002695 002696 /* Opcode: IfNot P1 P2 P3 * * 002697 ** 002698 ** Jump to P2 if the value in register P1 is False. The value 002699 ** is considered false if it has a numeric value of zero. If the value 002700 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002701 */ 002702 case OP_IfNot: { /* jump, in1 */ 002703 int c; 002704 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 002705 VdbeBranchTaken(c!=0, 2); 002706 if( c ) goto jump_to_p2; 002707 break; 002708 } 002709 002710 /* Opcode: IsNull P1 P2 * * * 002711 ** Synopsis: if r[P1]==NULL goto P2 002712 ** 002713 ** Jump to P2 if the value in register P1 is NULL. 002714 */ 002715 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 002716 pIn1 = &aMem[pOp->p1]; 002717 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 002718 if( (pIn1->flags & MEM_Null)!=0 ){ 002719 goto jump_to_p2; 002720 } 002721 break; 002722 } 002723 002724 /* Opcode: IsType P1 P2 P3 P4 P5 002725 ** Synopsis: if typeof(P1.P3) in P5 goto P2 002726 ** 002727 ** Jump to P2 if the type of a column in a btree is one of the types specified 002728 ** by the P5 bitmask. 002729 ** 002730 ** P1 is normally a cursor on a btree for which the row decode cache is 002731 ** valid through at least column P3. In other words, there should have been 002732 ** a prior OP_Column for column P3 or greater. If the cursor is not valid, 002733 ** then this opcode might give spurious results. 002734 ** The the btree row has fewer than P3 columns, then use P4 as the 002735 ** datatype. 002736 ** 002737 ** If P1 is -1, then P3 is a register number and the datatype is taken 002738 ** from the value in that register. 002739 ** 002740 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant 002741 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. 002742 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. 002743 ** 002744 ** WARNING: This opcode does not reliably distinguish between NULL and REAL 002745 ** when P1>=0. If the database contains a NaN value, this opcode will think 002746 ** that the datatype is REAL when it should be NULL. When P1<0 and the value 002747 ** is already stored in register P3, then this opcode does reliably 002748 ** distinguish between NULL and REAL. The problem only arises then P1>=0. 002749 ** 002750 ** Take the jump to address P2 if and only if the datatype of the 002751 ** value determined by P1 and P3 corresponds to one of the bits in the 002752 ** P5 bitmask. 002753 ** 002754 */ 002755 case OP_IsType: { /* jump */ 002756 VdbeCursor *pC; 002757 u16 typeMask; 002758 u32 serialType; 002759 002760 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor ); 002761 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); 002762 if( pOp->p1>=0 ){ 002763 pC = p->apCsr[pOp->p1]; 002764 assert( pC!=0 ); 002765 assert( pOp->p3>=0 ); 002766 if( pOp->p3<pC->nHdrParsed ){ 002767 serialType = pC->aType[pOp->p3]; 002768 if( serialType>=12 ){ 002769 if( serialType&1 ){ 002770 typeMask = 0x04; /* SQLITE_TEXT */ 002771 }else{ 002772 typeMask = 0x08; /* SQLITE_BLOB */ 002773 } 002774 }else{ 002775 static const unsigned char aMask[] = { 002776 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 002777 0x01, 0x01, 0x10, 0x10 002778 }; 002779 testcase( serialType==0 ); 002780 testcase( serialType==1 ); 002781 testcase( serialType==2 ); 002782 testcase( serialType==3 ); 002783 testcase( serialType==4 ); 002784 testcase( serialType==5 ); 002785 testcase( serialType==6 ); 002786 testcase( serialType==7 ); 002787 testcase( serialType==8 ); 002788 testcase( serialType==9 ); 002789 testcase( serialType==10 ); 002790 testcase( serialType==11 ); 002791 typeMask = aMask[serialType]; 002792 } 002793 }else{ 002794 typeMask = 1 << (pOp->p4.i - 1); 002795 testcase( typeMask==0x01 ); 002796 testcase( typeMask==0x02 ); 002797 testcase( typeMask==0x04 ); 002798 testcase( typeMask==0x08 ); 002799 testcase( typeMask==0x10 ); 002800 } 002801 }else{ 002802 assert( memIsValid(&aMem[pOp->p3]) ); 002803 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); 002804 testcase( typeMask==0x01 ); 002805 testcase( typeMask==0x02 ); 002806 testcase( typeMask==0x04 ); 002807 testcase( typeMask==0x08 ); 002808 testcase( typeMask==0x10 ); 002809 } 002810 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); 002811 if( typeMask & pOp->p5 ){ 002812 goto jump_to_p2; 002813 } 002814 break; 002815 } 002816 002817 /* Opcode: ZeroOrNull P1 P2 P3 * * 002818 ** Synopsis: r[P2] = 0 OR NULL 002819 ** 002820 ** If both registers P1 and P3 are NOT NULL, then store a zero in 002821 ** register P2. If either registers P1 or P3 are NULL then put 002822 ** a NULL in register P2. 002823 */ 002824 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 002825 if( (aMem[pOp->p1].flags & MEM_Null)!=0 002826 || (aMem[pOp->p3].flags & MEM_Null)!=0 002827 ){ 002828 sqlite3VdbeMemSetNull(aMem + pOp->p2); 002829 }else{ 002830 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 002831 } 002832 break; 002833 } 002834 002835 /* Opcode: NotNull P1 P2 * * * 002836 ** Synopsis: if r[P1]!=NULL goto P2 002837 ** 002838 ** Jump to P2 if the value in register P1 is not NULL. 002839 */ 002840 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 002841 pIn1 = &aMem[pOp->p1]; 002842 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 002843 if( (pIn1->flags & MEM_Null)==0 ){ 002844 goto jump_to_p2; 002845 } 002846 break; 002847 } 002848 002849 /* Opcode: IfNullRow P1 P2 P3 * * 002850 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 002851 ** 002852 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 002853 ** If it is, then set register P3 to NULL and jump immediately to P2. 002854 ** If P1 is not on a NULL row, then fall through without making any 002855 ** changes. 002856 ** 002857 ** If P1 is not an open cursor, then this opcode is a no-op. 002858 */ 002859 case OP_IfNullRow: { /* jump */ 002860 VdbeCursor *pC; 002861 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002862 pC = p->apCsr[pOp->p1]; 002863 if( pC && pC->nullRow ){ 002864 sqlite3VdbeMemSetNull(aMem + pOp->p3); 002865 goto jump_to_p2; 002866 } 002867 break; 002868 } 002869 002870 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 002871 /* Opcode: Offset P1 P2 P3 * * 002872 ** Synopsis: r[P3] = sqlite_offset(P1) 002873 ** 002874 ** Store in register r[P3] the byte offset into the database file that is the 002875 ** start of the payload for the record at which that cursor P1 is currently 002876 ** pointing. 002877 ** 002878 ** P2 is the column number for the argument to the sqlite_offset() function. 002879 ** This opcode does not use P2 itself, but the P2 value is used by the 002880 ** code generator. The P1, P2, and P3 operands to this opcode are the 002881 ** same as for OP_Column. 002882 ** 002883 ** This opcode is only available if SQLite is compiled with the 002884 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 002885 */ 002886 case OP_Offset: { /* out3 */ 002887 VdbeCursor *pC; /* The VDBE cursor */ 002888 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002889 pC = p->apCsr[pOp->p1]; 002890 pOut = &p->aMem[pOp->p3]; 002891 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 002892 sqlite3VdbeMemSetNull(pOut); 002893 }else{ 002894 if( pC->deferredMoveto ){ 002895 rc = sqlite3VdbeFinishMoveto(pC); 002896 if( rc ) goto abort_due_to_error; 002897 } 002898 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 002899 sqlite3VdbeMemSetNull(pOut); 002900 }else{ 002901 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 002902 } 002903 } 002904 break; 002905 } 002906 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 002907 002908 /* Opcode: Column P1 P2 P3 P4 P5 002909 ** Synopsis: r[P3]=PX cursor P1 column P2 002910 ** 002911 ** Interpret the data that cursor P1 points to as a structure built using 002912 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 002913 ** information about the format of the data.) Extract the P2-th column 002914 ** from this record. If there are less than (P2+1) 002915 ** values in the record, extract a NULL. 002916 ** 002917 ** The value extracted is stored in register P3. 002918 ** 002919 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 002920 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 002921 ** the result. 002922 ** 002923 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed 002924 ** to only be used by the length() function or the equivalent. The content 002925 ** of large blobs is not loaded, thus saving CPU cycles. If the 002926 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the 002927 ** typeof() function or the IS NULL or IS NOT NULL operators or the 002928 ** equivalent. In this case, all content loading can be omitted. 002929 */ 002930 case OP_Column: { /* ncycle */ 002931 u32 p2; /* column number to retrieve */ 002932 VdbeCursor *pC; /* The VDBE cursor */ 002933 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 002934 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 002935 int len; /* The length of the serialized data for the column */ 002936 int i; /* Loop counter */ 002937 Mem *pDest; /* Where to write the extracted value */ 002938 Mem sMem; /* For storing the record being decoded */ 002939 const u8 *zData; /* Part of the record being decoded */ 002940 const u8 *zHdr; /* Next unparsed byte of the header */ 002941 const u8 *zEndHdr; /* Pointer to first byte after the header */ 002942 u64 offset64; /* 64-bit offset */ 002943 u32 t; /* A type code from the record header */ 002944 Mem *pReg; /* PseudoTable input register */ 002945 002946 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002947 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 002948 pC = p->apCsr[pOp->p1]; 002949 p2 = (u32)pOp->p2; 002950 002951 op_column_restart: 002952 assert( pC!=0 ); 002953 assert( p2<(u32)pC->nField 002954 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 002955 aOffset = pC->aOffset; 002956 assert( aOffset==pC->aType+pC->nField ); 002957 assert( pC->eCurType!=CURTYPE_VTAB ); 002958 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 002959 assert( pC->eCurType!=CURTYPE_SORTER ); 002960 002961 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 002962 if( pC->nullRow ){ 002963 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 002964 /* For the special case of as pseudo-cursor, the seekResult field 002965 ** identifies the register that holds the record */ 002966 pReg = &aMem[pC->seekResult]; 002967 assert( pReg->flags & MEM_Blob ); 002968 assert( memIsValid(pReg) ); 002969 pC->payloadSize = pC->szRow = pReg->n; 002970 pC->aRow = (u8*)pReg->z; 002971 }else{ 002972 pDest = &aMem[pOp->p3]; 002973 memAboutToChange(p, pDest); 002974 sqlite3VdbeMemSetNull(pDest); 002975 goto op_column_out; 002976 } 002977 }else{ 002978 pCrsr = pC->uc.pCursor; 002979 if( pC->deferredMoveto ){ 002980 u32 iMap; 002981 assert( !pC->isEphemeral ); 002982 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 002983 pC = pC->pAltCursor; 002984 p2 = iMap - 1; 002985 goto op_column_restart; 002986 } 002987 rc = sqlite3VdbeFinishMoveto(pC); 002988 if( rc ) goto abort_due_to_error; 002989 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 002990 rc = sqlite3VdbeHandleMovedCursor(pC); 002991 if( rc ) goto abort_due_to_error; 002992 goto op_column_restart; 002993 } 002994 assert( pC->eCurType==CURTYPE_BTREE ); 002995 assert( pCrsr ); 002996 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 002997 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 002998 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 002999 assert( pC->szRow<=pC->payloadSize ); 003000 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 003001 } 003002 pC->cacheStatus = p->cacheCtr; 003003 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 003004 pC->iHdrOffset = 1; 003005 }else{ 003006 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 003007 } 003008 pC->nHdrParsed = 0; 003009 003010 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 003011 /* pC->aRow does not have to hold the entire row, but it does at least 003012 ** need to cover the header of the record. If pC->aRow does not contain 003013 ** the complete header, then set it to zero, forcing the header to be 003014 ** dynamically allocated. */ 003015 pC->aRow = 0; 003016 pC->szRow = 0; 003017 003018 /* Make sure a corrupt database has not given us an oversize header. 003019 ** Do this now to avoid an oversize memory allocation. 003020 ** 003021 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 003022 ** types use so much data space that there can only be 4096 and 32 of 003023 ** them, respectively. So the maximum header length results from a 003024 ** 3-byte type for each of the maximum of 32768 columns plus three 003025 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 003026 */ 003027 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 003028 goto op_column_corrupt; 003029 } 003030 }else{ 003031 /* This is an optimization. By skipping over the first few tests 003032 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 003033 ** measurable performance gain. 003034 ** 003035 ** This branch is taken even if aOffset[0]==0. Such a record is never 003036 ** generated by SQLite, and could be considered corruption, but we 003037 ** accept it for historical reasons. When aOffset[0]==0, the code this 003038 ** branch jumps to reads past the end of the record, but never more 003039 ** than a few bytes. Even if the record occurs at the end of the page 003040 ** content area, the "page header" comes after the page content and so 003041 ** this overread is harmless. Similar overreads can occur for a corrupt 003042 ** database file. 003043 */ 003044 zData = pC->aRow; 003045 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 003046 testcase( aOffset[0]==0 ); 003047 goto op_column_read_header; 003048 } 003049 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 003050 rc = sqlite3VdbeHandleMovedCursor(pC); 003051 if( rc ) goto abort_due_to_error; 003052 goto op_column_restart; 003053 } 003054 003055 /* Make sure at least the first p2+1 entries of the header have been 003056 ** parsed and valid information is in aOffset[] and pC->aType[]. 003057 */ 003058 if( pC->nHdrParsed<=p2 ){ 003059 /* If there is more header available for parsing in the record, try 003060 ** to extract additional fields up through the p2+1-th field 003061 */ 003062 if( pC->iHdrOffset<aOffset[0] ){ 003063 /* Make sure zData points to enough of the record to cover the header. */ 003064 if( pC->aRow==0 ){ 003065 memset(&sMem, 0, sizeof(sMem)); 003066 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 003067 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003068 zData = (u8*)sMem.z; 003069 }else{ 003070 zData = pC->aRow; 003071 } 003072 003073 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 003074 op_column_read_header: 003075 i = pC->nHdrParsed; 003076 offset64 = aOffset[i]; 003077 zHdr = zData + pC->iHdrOffset; 003078 zEndHdr = zData + aOffset[0]; 003079 testcase( zHdr>=zEndHdr ); 003080 do{ 003081 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 003082 zHdr++; 003083 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 003084 }else{ 003085 zHdr += sqlite3GetVarint32(zHdr, &t); 003086 pC->aType[i] = t; 003087 offset64 += sqlite3VdbeSerialTypeLen(t); 003088 } 003089 aOffset[++i] = (u32)(offset64 & 0xffffffff); 003090 }while( (u32)i<=p2 && zHdr<zEndHdr ); 003091 003092 /* The record is corrupt if any of the following are true: 003093 ** (1) the bytes of the header extend past the declared header size 003094 ** (2) the entire header was used but not all data was used 003095 ** (3) the end of the data extends beyond the end of the record. 003096 */ 003097 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 003098 || (offset64 > pC->payloadSize) 003099 ){ 003100 if( aOffset[0]==0 ){ 003101 i = 0; 003102 zHdr = zEndHdr; 003103 }else{ 003104 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003105 goto op_column_corrupt; 003106 } 003107 } 003108 003109 pC->nHdrParsed = i; 003110 pC->iHdrOffset = (u32)(zHdr - zData); 003111 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003112 }else{ 003113 t = 0; 003114 } 003115 003116 /* If after trying to extract new entries from the header, nHdrParsed is 003117 ** still not up to p2, that means that the record has fewer than p2 003118 ** columns. So the result will be either the default value or a NULL. 003119 */ 003120 if( pC->nHdrParsed<=p2 ){ 003121 pDest = &aMem[pOp->p3]; 003122 memAboutToChange(p, pDest); 003123 if( pOp->p4type==P4_MEM ){ 003124 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 003125 }else{ 003126 sqlite3VdbeMemSetNull(pDest); 003127 } 003128 goto op_column_out; 003129 } 003130 }else{ 003131 t = pC->aType[p2]; 003132 } 003133 003134 /* Extract the content for the p2+1-th column. Control can only 003135 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 003136 ** all valid. 003137 */ 003138 assert( p2<pC->nHdrParsed ); 003139 assert( rc==SQLITE_OK ); 003140 pDest = &aMem[pOp->p3]; 003141 memAboutToChange(p, pDest); 003142 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 003143 if( VdbeMemDynamic(pDest) ){ 003144 sqlite3VdbeMemSetNull(pDest); 003145 } 003146 assert( t==pC->aType[p2] ); 003147 if( pC->szRow>=aOffset[p2+1] ){ 003148 /* This is the common case where the desired content fits on the original 003149 ** page - where the content is not on an overflow page */ 003150 zData = pC->aRow + aOffset[p2]; 003151 if( t<12 ){ 003152 sqlite3VdbeSerialGet(zData, t, pDest); 003153 }else{ 003154 /* If the column value is a string, we need a persistent value, not 003155 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 003156 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 003157 */ 003158 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 003159 pDest->n = len = (t-12)/2; 003160 pDest->enc = encoding; 003161 if( pDest->szMalloc < len+2 ){ 003162 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 003163 pDest->flags = MEM_Null; 003164 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 003165 }else{ 003166 pDest->z = pDest->zMalloc; 003167 } 003168 memcpy(pDest->z, zData, len); 003169 pDest->z[len] = 0; 003170 pDest->z[len+1] = 0; 003171 pDest->flags = aFlag[t&1]; 003172 } 003173 }else{ 003174 u8 p5; 003175 pDest->enc = encoding; 003176 assert( pDest->db==db ); 003177 /* This branch happens only when content is on overflow pages */ 003178 if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 003179 && (p5==OPFLAG_TYPEOFARG 003180 || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) 003181 ) 003182 ) 003183 || sqlite3VdbeSerialTypeLen(t)==0 003184 ){ 003185 /* Content is irrelevant for 003186 ** 1. the typeof() function, 003187 ** 2. the length(X) function if X is a blob, and 003188 ** 3. if the content length is zero. 003189 ** So we might as well use bogus content rather than reading 003190 ** content from disk. 003191 ** 003192 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 003193 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 003194 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 003195 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 003196 ** and it begins with a bunch of zeros. 003197 */ 003198 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 003199 }else{ 003200 rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], 003201 p->cacheCtr, colCacheCtr, pDest); 003202 if( rc ){ 003203 if( rc==SQLITE_NOMEM ) goto no_mem; 003204 if( rc==SQLITE_TOOBIG ) goto too_big; 003205 goto abort_due_to_error; 003206 } 003207 } 003208 } 003209 003210 op_column_out: 003211 UPDATE_MAX_BLOBSIZE(pDest); 003212 REGISTER_TRACE(pOp->p3, pDest); 003213 break; 003214 003215 op_column_corrupt: 003216 if( aOp[0].p3>0 ){ 003217 pOp = &aOp[aOp[0].p3-1]; 003218 break; 003219 }else{ 003220 rc = SQLITE_CORRUPT_BKPT; 003221 goto abort_due_to_error; 003222 } 003223 } 003224 003225 /* Opcode: TypeCheck P1 P2 P3 P4 * 003226 ** Synopsis: typecheck(r[P1@P2]) 003227 ** 003228 ** Apply affinities to the range of P2 registers beginning with P1. 003229 ** Take the affinities from the Table object in P4. If any value 003230 ** cannot be coerced into the correct type, then raise an error. 003231 ** 003232 ** This opcode is similar to OP_Affinity except that this opcode 003233 ** forces the register type to the Table column type. This is used 003234 ** to implement "strict affinity". 003235 ** 003236 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 003237 ** is zero. When P3 is non-zero, no type checking occurs for 003238 ** static generated columns. Virtual columns are computed at query time 003239 ** and so they are never checked. 003240 ** 003241 ** Preconditions: 003242 ** 003243 ** <ul> 003244 ** <li> P2 should be the number of non-virtual columns in the 003245 ** table of P4. 003246 ** <li> Table P4 should be a STRICT table. 003247 ** </ul> 003248 ** 003249 ** If any precondition is false, an assertion fault occurs. 003250 */ 003251 case OP_TypeCheck: { 003252 Table *pTab; 003253 Column *aCol; 003254 int i; 003255 003256 assert( pOp->p4type==P4_TABLE ); 003257 pTab = pOp->p4.pTab; 003258 assert( pTab->tabFlags & TF_Strict ); 003259 assert( pTab->nNVCol==pOp->p2 ); 003260 aCol = pTab->aCol; 003261 pIn1 = &aMem[pOp->p1]; 003262 for(i=0; i<pTab->nCol; i++){ 003263 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 003264 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 003265 if( pOp->p3 ){ pIn1++; continue; } 003266 } 003267 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 003268 applyAffinity(pIn1, aCol[i].affinity, encoding); 003269 if( (pIn1->flags & MEM_Null)==0 ){ 003270 switch( aCol[i].eCType ){ 003271 case COLTYPE_BLOB: { 003272 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 003273 break; 003274 } 003275 case COLTYPE_INTEGER: 003276 case COLTYPE_INT: { 003277 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 003278 break; 003279 } 003280 case COLTYPE_TEXT: { 003281 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 003282 break; 003283 } 003284 case COLTYPE_REAL: { 003285 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 003286 assert( (pIn1->flags & MEM_IntReal)==0 ); 003287 if( pIn1->flags & MEM_Int ){ 003288 /* When applying REAL affinity, if the result is still an MEM_Int 003289 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003290 ** so that we keep the high-resolution integer value but know that 003291 ** the type really wants to be REAL. */ 003292 testcase( pIn1->u.i==140737488355328LL ); 003293 testcase( pIn1->u.i==140737488355327LL ); 003294 testcase( pIn1->u.i==-140737488355328LL ); 003295 testcase( pIn1->u.i==-140737488355329LL ); 003296 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 003297 pIn1->flags |= MEM_IntReal; 003298 pIn1->flags &= ~MEM_Int; 003299 }else{ 003300 pIn1->u.r = (double)pIn1->u.i; 003301 pIn1->flags |= MEM_Real; 003302 pIn1->flags &= ~MEM_Int; 003303 } 003304 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 003305 goto vdbe_type_error; 003306 } 003307 break; 003308 } 003309 default: { 003310 /* COLTYPE_ANY. Accept anything. */ 003311 break; 003312 } 003313 } 003314 } 003315 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003316 pIn1++; 003317 } 003318 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 003319 break; 003320 003321 vdbe_type_error: 003322 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 003323 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 003324 pTab->zName, aCol[i].zCnName); 003325 rc = SQLITE_CONSTRAINT_DATATYPE; 003326 goto abort_due_to_error; 003327 } 003328 003329 /* Opcode: Affinity P1 P2 * P4 * 003330 ** Synopsis: affinity(r[P1@P2]) 003331 ** 003332 ** Apply affinities to a range of P2 registers starting with P1. 003333 ** 003334 ** P4 is a string that is P2 characters long. The N-th character of the 003335 ** string indicates the column affinity that should be used for the N-th 003336 ** memory cell in the range. 003337 */ 003338 case OP_Affinity: { 003339 const char *zAffinity; /* The affinity to be applied */ 003340 003341 zAffinity = pOp->p4.z; 003342 assert( zAffinity!=0 ); 003343 assert( pOp->p2>0 ); 003344 assert( zAffinity[pOp->p2]==0 ); 003345 pIn1 = &aMem[pOp->p1]; 003346 while( 1 /*exit-by-break*/ ){ 003347 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 003348 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 003349 applyAffinity(pIn1, zAffinity[0], encoding); 003350 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 003351 /* When applying REAL affinity, if the result is still an MEM_Int 003352 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003353 ** so that we keep the high-resolution integer value but know that 003354 ** the type really wants to be REAL. */ 003355 testcase( pIn1->u.i==140737488355328LL ); 003356 testcase( pIn1->u.i==140737488355327LL ); 003357 testcase( pIn1->u.i==-140737488355328LL ); 003358 testcase( pIn1->u.i==-140737488355329LL ); 003359 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 003360 pIn1->flags |= MEM_IntReal; 003361 pIn1->flags &= ~MEM_Int; 003362 }else{ 003363 pIn1->u.r = (double)pIn1->u.i; 003364 pIn1->flags |= MEM_Real; 003365 pIn1->flags &= ~(MEM_Int|MEM_Str); 003366 } 003367 } 003368 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003369 zAffinity++; 003370 if( zAffinity[0]==0 ) break; 003371 pIn1++; 003372 } 003373 break; 003374 } 003375 003376 /* Opcode: MakeRecord P1 P2 P3 P4 * 003377 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 003378 ** 003379 ** Convert P2 registers beginning with P1 into the [record format] 003380 ** use as a data record in a database table or as a key 003381 ** in an index. The OP_Column opcode can decode the record later. 003382 ** 003383 ** P4 may be a string that is P2 characters long. The N-th character of the 003384 ** string indicates the column affinity that should be used for the N-th 003385 ** field of the index key. 003386 ** 003387 ** The mapping from character to affinity is given by the SQLITE_AFF_ 003388 ** macros defined in sqliteInt.h. 003389 ** 003390 ** If P4 is NULL then all index fields have the affinity BLOB. 003391 ** 003392 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 003393 ** compile-time option is enabled: 003394 ** 003395 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 003396 ** of the right-most table that can be null-trimmed. 003397 ** 003398 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 003399 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 003400 ** accept no-change records with serial_type 10. This value is 003401 ** only used inside an assert() and does not affect the end result. 003402 */ 003403 case OP_MakeRecord: { 003404 Mem *pRec; /* The new record */ 003405 u64 nData; /* Number of bytes of data space */ 003406 int nHdr; /* Number of bytes of header space */ 003407 i64 nByte; /* Data space required for this record */ 003408 i64 nZero; /* Number of zero bytes at the end of the record */ 003409 int nVarint; /* Number of bytes in a varint */ 003410 u32 serial_type; /* Type field */ 003411 Mem *pData0; /* First field to be combined into the record */ 003412 Mem *pLast; /* Last field of the record */ 003413 int nField; /* Number of fields in the record */ 003414 char *zAffinity; /* The affinity string for the record */ 003415 u32 len; /* Length of a field */ 003416 u8 *zHdr; /* Where to write next byte of the header */ 003417 u8 *zPayload; /* Where to write next byte of the payload */ 003418 003419 /* Assuming the record contains N fields, the record format looks 003420 ** like this: 003421 ** 003422 ** ------------------------------------------------------------------------ 003423 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 003424 ** ------------------------------------------------------------------------ 003425 ** 003426 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 003427 ** and so forth. 003428 ** 003429 ** Each type field is a varint representing the serial type of the 003430 ** corresponding data element (see sqlite3VdbeSerialType()). The 003431 ** hdr-size field is also a varint which is the offset from the beginning 003432 ** of the record to data0. 003433 */ 003434 nData = 0; /* Number of bytes of data space */ 003435 nHdr = 0; /* Number of bytes of header space */ 003436 nZero = 0; /* Number of zero bytes at the end of the record */ 003437 nField = pOp->p1; 003438 zAffinity = pOp->p4.z; 003439 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 003440 pData0 = &aMem[nField]; 003441 nField = pOp->p2; 003442 pLast = &pData0[nField-1]; 003443 003444 /* Identify the output register */ 003445 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 003446 pOut = &aMem[pOp->p3]; 003447 memAboutToChange(p, pOut); 003448 003449 /* Apply the requested affinity to all inputs 003450 */ 003451 assert( pData0<=pLast ); 003452 if( zAffinity ){ 003453 pRec = pData0; 003454 do{ 003455 applyAffinity(pRec, zAffinity[0], encoding); 003456 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 003457 pRec->flags |= MEM_IntReal; 003458 pRec->flags &= ~(MEM_Int); 003459 } 003460 REGISTER_TRACE((int)(pRec-aMem), pRec); 003461 zAffinity++; 003462 pRec++; 003463 assert( zAffinity[0]==0 || pRec<=pLast ); 003464 }while( zAffinity[0] ); 003465 } 003466 003467 #ifdef SQLITE_ENABLE_NULL_TRIM 003468 /* NULLs can be safely trimmed from the end of the record, as long as 003469 ** as the schema format is 2 or more and none of the omitted columns 003470 ** have a non-NULL default value. Also, the record must be left with 003471 ** at least one field. If P5>0 then it will be one more than the 003472 ** index of the right-most column with a non-NULL default value */ 003473 if( pOp->p5 ){ 003474 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 003475 pLast--; 003476 nField--; 003477 } 003478 } 003479 #endif 003480 003481 /* Loop through the elements that will make up the record to figure 003482 ** out how much space is required for the new record. After this loop, 003483 ** the Mem.uTemp field of each term should hold the serial-type that will 003484 ** be used for that term in the generated record: 003485 ** 003486 ** Mem.uTemp value type 003487 ** --------------- --------------- 003488 ** 0 NULL 003489 ** 1 1-byte signed integer 003490 ** 2 2-byte signed integer 003491 ** 3 3-byte signed integer 003492 ** 4 4-byte signed integer 003493 ** 5 6-byte signed integer 003494 ** 6 8-byte signed integer 003495 ** 7 IEEE float 003496 ** 8 Integer constant 0 003497 ** 9 Integer constant 1 003498 ** 10,11 reserved for expansion 003499 ** N>=12 and even BLOB 003500 ** N>=13 and odd text 003501 ** 003502 ** The following additional values are computed: 003503 ** nHdr Number of bytes needed for the record header 003504 ** nData Number of bytes of data space needed for the record 003505 ** nZero Zero bytes at the end of the record 003506 */ 003507 pRec = pLast; 003508 do{ 003509 assert( memIsValid(pRec) ); 003510 if( pRec->flags & MEM_Null ){ 003511 if( pRec->flags & MEM_Zero ){ 003512 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 003513 ** table methods that never invoke sqlite3_result_xxxxx() while 003514 ** computing an unchanging column value in an UPDATE statement. 003515 ** Give such values a special internal-use-only serial-type of 10 003516 ** so that they can be passed through to xUpdate and have 003517 ** a true sqlite3_value_nochange(). */ 003518 #ifndef SQLITE_ENABLE_NULL_TRIM 003519 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 003520 #endif 003521 pRec->uTemp = 10; 003522 }else{ 003523 pRec->uTemp = 0; 003524 } 003525 nHdr++; 003526 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 003527 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003528 i64 i = pRec->u.i; 003529 u64 uu; 003530 testcase( pRec->flags & MEM_Int ); 003531 testcase( pRec->flags & MEM_IntReal ); 003532 if( i<0 ){ 003533 uu = ~i; 003534 }else{ 003535 uu = i; 003536 } 003537 nHdr++; 003538 testcase( uu==127 ); testcase( uu==128 ); 003539 testcase( uu==32767 ); testcase( uu==32768 ); 003540 testcase( uu==8388607 ); testcase( uu==8388608 ); 003541 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 003542 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 003543 if( uu<=127 ){ 003544 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 003545 pRec->uTemp = 8+(u32)uu; 003546 }else{ 003547 nData++; 003548 pRec->uTemp = 1; 003549 } 003550 }else if( uu<=32767 ){ 003551 nData += 2; 003552 pRec->uTemp = 2; 003553 }else if( uu<=8388607 ){ 003554 nData += 3; 003555 pRec->uTemp = 3; 003556 }else if( uu<=2147483647 ){ 003557 nData += 4; 003558 pRec->uTemp = 4; 003559 }else if( uu<=140737488355327LL ){ 003560 nData += 6; 003561 pRec->uTemp = 5; 003562 }else{ 003563 nData += 8; 003564 if( pRec->flags & MEM_IntReal ){ 003565 /* If the value is IntReal and is going to take up 8 bytes to store 003566 ** as an integer, then we might as well make it an 8-byte floating 003567 ** point value */ 003568 pRec->u.r = (double)pRec->u.i; 003569 pRec->flags &= ~MEM_IntReal; 003570 pRec->flags |= MEM_Real; 003571 pRec->uTemp = 7; 003572 }else{ 003573 pRec->uTemp = 6; 003574 } 003575 } 003576 }else if( pRec->flags & MEM_Real ){ 003577 nHdr++; 003578 nData += 8; 003579 pRec->uTemp = 7; 003580 }else{ 003581 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 003582 assert( pRec->n>=0 ); 003583 len = (u32)pRec->n; 003584 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 003585 if( pRec->flags & MEM_Zero ){ 003586 serial_type += pRec->u.nZero*2; 003587 if( nData ){ 003588 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 003589 len += pRec->u.nZero; 003590 }else{ 003591 nZero += pRec->u.nZero; 003592 } 003593 } 003594 nData += len; 003595 nHdr += sqlite3VarintLen(serial_type); 003596 pRec->uTemp = serial_type; 003597 } 003598 if( pRec==pData0 ) break; 003599 pRec--; 003600 }while(1); 003601 003602 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 003603 ** which determines the total number of bytes in the header. The varint 003604 ** value is the size of the header in bytes including the size varint 003605 ** itself. */ 003606 testcase( nHdr==126 ); 003607 testcase( nHdr==127 ); 003608 if( nHdr<=126 ){ 003609 /* The common case */ 003610 nHdr += 1; 003611 }else{ 003612 /* Rare case of a really large header */ 003613 nVarint = sqlite3VarintLen(nHdr); 003614 nHdr += nVarint; 003615 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 003616 } 003617 nByte = nHdr+nData; 003618 003619 /* Make sure the output register has a buffer large enough to store 003620 ** the new record. The output register (pOp->p3) is not allowed to 003621 ** be one of the input registers (because the following call to 003622 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 003623 */ 003624 if( nByte+nZero<=pOut->szMalloc ){ 003625 /* The output register is already large enough to hold the record. 003626 ** No error checks or buffer enlargement is required */ 003627 pOut->z = pOut->zMalloc; 003628 }else{ 003629 /* Need to make sure that the output is not too big and then enlarge 003630 ** the output register to hold the full result */ 003631 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 003632 goto too_big; 003633 } 003634 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 003635 goto no_mem; 003636 } 003637 } 003638 pOut->n = (int)nByte; 003639 pOut->flags = MEM_Blob; 003640 if( nZero ){ 003641 pOut->u.nZero = nZero; 003642 pOut->flags |= MEM_Zero; 003643 } 003644 UPDATE_MAX_BLOBSIZE(pOut); 003645 zHdr = (u8 *)pOut->z; 003646 zPayload = zHdr + nHdr; 003647 003648 /* Write the record */ 003649 if( nHdr<0x80 ){ 003650 *(zHdr++) = nHdr; 003651 }else{ 003652 zHdr += sqlite3PutVarint(zHdr,nHdr); 003653 } 003654 assert( pData0<=pLast ); 003655 pRec = pData0; 003656 while( 1 /*exit-by-break*/ ){ 003657 serial_type = pRec->uTemp; 003658 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 003659 ** additional varints, one per column. 003660 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 003661 ** immediately follow the header. */ 003662 if( serial_type<=7 ){ 003663 *(zHdr++) = serial_type; 003664 if( serial_type==0 ){ 003665 /* NULL value. No change in zPayload */ 003666 }else{ 003667 u64 v; 003668 if( serial_type==7 ){ 003669 assert( sizeof(v)==sizeof(pRec->u.r) ); 003670 memcpy(&v, &pRec->u.r, sizeof(v)); 003671 swapMixedEndianFloat(v); 003672 }else{ 003673 v = pRec->u.i; 003674 } 003675 len = sqlite3SmallTypeSizes[serial_type]; 003676 assert( len>=1 && len<=8 && len!=5 && len!=7 ); 003677 switch( len ){ 003678 default: zPayload[7] = (u8)(v&0xff); v >>= 8; 003679 zPayload[6] = (u8)(v&0xff); v >>= 8; 003680 /* no break */ deliberate_fall_through 003681 case 6: zPayload[5] = (u8)(v&0xff); v >>= 8; 003682 zPayload[4] = (u8)(v&0xff); v >>= 8; 003683 /* no break */ deliberate_fall_through 003684 case 4: zPayload[3] = (u8)(v&0xff); v >>= 8; 003685 /* no break */ deliberate_fall_through 003686 case 3: zPayload[2] = (u8)(v&0xff); v >>= 8; 003687 /* no break */ deliberate_fall_through 003688 case 2: zPayload[1] = (u8)(v&0xff); v >>= 8; 003689 /* no break */ deliberate_fall_through 003690 case 1: zPayload[0] = (u8)(v&0xff); 003691 } 003692 zPayload += len; 003693 } 003694 }else if( serial_type<0x80 ){ 003695 *(zHdr++) = serial_type; 003696 if( serial_type>=14 && pRec->n>0 ){ 003697 assert( pRec->z!=0 ); 003698 memcpy(zPayload, pRec->z, pRec->n); 003699 zPayload += pRec->n; 003700 } 003701 }else{ 003702 zHdr += sqlite3PutVarint(zHdr, serial_type); 003703 if( pRec->n ){ 003704 assert( pRec->z!=0 ); 003705 memcpy(zPayload, pRec->z, pRec->n); 003706 zPayload += pRec->n; 003707 } 003708 } 003709 if( pRec==pLast ) break; 003710 pRec++; 003711 } 003712 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 003713 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 003714 003715 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 003716 REGISTER_TRACE(pOp->p3, pOut); 003717 break; 003718 } 003719 003720 /* Opcode: Count P1 P2 P3 * * 003721 ** Synopsis: r[P2]=count() 003722 ** 003723 ** Store the number of entries (an integer value) in the table or index 003724 ** opened by cursor P1 in register P2. 003725 ** 003726 ** If P3==0, then an exact count is obtained, which involves visiting 003727 ** every btree page of the table. But if P3 is non-zero, an estimate 003728 ** is returned based on the current cursor position. 003729 */ 003730 case OP_Count: { /* out2 */ 003731 i64 nEntry; 003732 BtCursor *pCrsr; 003733 003734 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 003735 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 003736 assert( pCrsr ); 003737 if( pOp->p3 ){ 003738 nEntry = sqlite3BtreeRowCountEst(pCrsr); 003739 }else{ 003740 nEntry = 0; /* Not needed. Only used to silence a warning. */ 003741 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 003742 if( rc ) goto abort_due_to_error; 003743 } 003744 pOut = out2Prerelease(p, pOp); 003745 pOut->u.i = nEntry; 003746 goto check_for_interrupt; 003747 } 003748 003749 /* Opcode: Savepoint P1 * * P4 * 003750 ** 003751 ** Open, release or rollback the savepoint named by parameter P4, depending 003752 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 003753 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 003754 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 003755 */ 003756 case OP_Savepoint: { 003757 int p1; /* Value of P1 operand */ 003758 char *zName; /* Name of savepoint */ 003759 int nName; 003760 Savepoint *pNew; 003761 Savepoint *pSavepoint; 003762 Savepoint *pTmp; 003763 int iSavepoint; 003764 int ii; 003765 003766 p1 = pOp->p1; 003767 zName = pOp->p4.z; 003768 003769 /* Assert that the p1 parameter is valid. Also that if there is no open 003770 ** transaction, then there cannot be any savepoints. 003771 */ 003772 assert( db->pSavepoint==0 || db->autoCommit==0 ); 003773 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 003774 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 003775 assert( checkSavepointCount(db) ); 003776 assert( p->bIsReader ); 003777 003778 if( p1==SAVEPOINT_BEGIN ){ 003779 if( db->nVdbeWrite>0 ){ 003780 /* A new savepoint cannot be created if there are active write 003781 ** statements (i.e. open read/write incremental blob handles). 003782 */ 003783 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 003784 rc = SQLITE_BUSY; 003785 }else{ 003786 nName = sqlite3Strlen30(zName); 003787 003788 #ifndef SQLITE_OMIT_VIRTUALTABLE 003789 /* This call is Ok even if this savepoint is actually a transaction 003790 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 003791 ** If this is a transaction savepoint being opened, it is guaranteed 003792 ** that the db->aVTrans[] array is empty. */ 003793 assert( db->autoCommit==0 || db->nVTrans==0 ); 003794 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 003795 db->nStatement+db->nSavepoint); 003796 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003797 #endif 003798 003799 /* Create a new savepoint structure. */ 003800 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 003801 if( pNew ){ 003802 pNew->zName = (char *)&pNew[1]; 003803 memcpy(pNew->zName, zName, nName+1); 003804 003805 /* If there is no open transaction, then mark this as a special 003806 ** "transaction savepoint". */ 003807 if( db->autoCommit ){ 003808 db->autoCommit = 0; 003809 db->isTransactionSavepoint = 1; 003810 }else{ 003811 db->nSavepoint++; 003812 } 003813 003814 /* Link the new savepoint into the database handle's list. */ 003815 pNew->pNext = db->pSavepoint; 003816 db->pSavepoint = pNew; 003817 pNew->nDeferredCons = db->nDeferredCons; 003818 pNew->nDeferredImmCons = db->nDeferredImmCons; 003819 } 003820 } 003821 }else{ 003822 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 003823 iSavepoint = 0; 003824 003825 /* Find the named savepoint. If there is no such savepoint, then an 003826 ** an error is returned to the user. */ 003827 for( 003828 pSavepoint = db->pSavepoint; 003829 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 003830 pSavepoint = pSavepoint->pNext 003831 ){ 003832 iSavepoint++; 003833 } 003834 if( !pSavepoint ){ 003835 sqlite3VdbeError(p, "no such savepoint: %s", zName); 003836 rc = SQLITE_ERROR; 003837 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 003838 /* It is not possible to release (commit) a savepoint if there are 003839 ** active write statements. 003840 */ 003841 sqlite3VdbeError(p, "cannot release savepoint - " 003842 "SQL statements in progress"); 003843 rc = SQLITE_BUSY; 003844 }else{ 003845 003846 /* Determine whether or not this is a transaction savepoint. If so, 003847 ** and this is a RELEASE command, then the current transaction 003848 ** is committed. 003849 */ 003850 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 003851 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 003852 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003853 goto vdbe_return; 003854 } 003855 db->autoCommit = 1; 003856 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003857 p->pc = (int)(pOp - aOp); 003858 db->autoCommit = 0; 003859 p->rc = rc = SQLITE_BUSY; 003860 goto vdbe_return; 003861 } 003862 rc = p->rc; 003863 if( rc ){ 003864 db->autoCommit = 0; 003865 }else{ 003866 db->isTransactionSavepoint = 0; 003867 } 003868 }else{ 003869 int isSchemaChange; 003870 iSavepoint = db->nSavepoint - iSavepoint - 1; 003871 if( p1==SAVEPOINT_ROLLBACK ){ 003872 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 003873 for(ii=0; ii<db->nDb; ii++){ 003874 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 003875 SQLITE_ABORT_ROLLBACK, 003876 isSchemaChange==0); 003877 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003878 } 003879 }else{ 003880 assert( p1==SAVEPOINT_RELEASE ); 003881 isSchemaChange = 0; 003882 } 003883 for(ii=0; ii<db->nDb; ii++){ 003884 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 003885 if( rc!=SQLITE_OK ){ 003886 goto abort_due_to_error; 003887 } 003888 } 003889 if( isSchemaChange ){ 003890 sqlite3ExpirePreparedStatements(db, 0); 003891 sqlite3ResetAllSchemasOfConnection(db); 003892 db->mDbFlags |= DBFLAG_SchemaChange; 003893 } 003894 } 003895 if( rc ) goto abort_due_to_error; 003896 003897 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 003898 ** savepoints nested inside of the savepoint being operated on. */ 003899 while( db->pSavepoint!=pSavepoint ){ 003900 pTmp = db->pSavepoint; 003901 db->pSavepoint = pTmp->pNext; 003902 sqlite3DbFree(db, pTmp); 003903 db->nSavepoint--; 003904 } 003905 003906 /* If it is a RELEASE, then destroy the savepoint being operated on 003907 ** too. If it is a ROLLBACK TO, then set the number of deferred 003908 ** constraint violations present in the database to the value stored 003909 ** when the savepoint was created. */ 003910 if( p1==SAVEPOINT_RELEASE ){ 003911 assert( pSavepoint==db->pSavepoint ); 003912 db->pSavepoint = pSavepoint->pNext; 003913 sqlite3DbFree(db, pSavepoint); 003914 if( !isTransaction ){ 003915 db->nSavepoint--; 003916 } 003917 }else{ 003918 assert( p1==SAVEPOINT_ROLLBACK ); 003919 db->nDeferredCons = pSavepoint->nDeferredCons; 003920 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 003921 } 003922 003923 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 003924 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 003925 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003926 } 003927 } 003928 } 003929 if( rc ) goto abort_due_to_error; 003930 if( p->eVdbeState==VDBE_HALT_STATE ){ 003931 rc = SQLITE_DONE; 003932 goto vdbe_return; 003933 } 003934 break; 003935 } 003936 003937 /* Opcode: AutoCommit P1 P2 * * * 003938 ** 003939 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 003940 ** back any currently active btree transactions. If there are any active 003941 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 003942 ** there are active writing VMs or active VMs that use shared cache. 003943 ** 003944 ** This instruction causes the VM to halt. 003945 */ 003946 case OP_AutoCommit: { 003947 int desiredAutoCommit; 003948 int iRollback; 003949 003950 desiredAutoCommit = pOp->p1; 003951 iRollback = pOp->p2; 003952 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 003953 assert( desiredAutoCommit==1 || iRollback==0 ); 003954 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 003955 assert( p->bIsReader ); 003956 003957 if( desiredAutoCommit!=db->autoCommit ){ 003958 if( iRollback ){ 003959 assert( desiredAutoCommit==1 ); 003960 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003961 db->autoCommit = 1; 003962 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 003963 /* If this instruction implements a COMMIT and other VMs are writing 003964 ** return an error indicating that the other VMs must complete first. 003965 */ 003966 sqlite3VdbeError(p, "cannot commit transaction - " 003967 "SQL statements in progress"); 003968 rc = SQLITE_BUSY; 003969 goto abort_due_to_error; 003970 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003971 goto vdbe_return; 003972 }else{ 003973 db->autoCommit = (u8)desiredAutoCommit; 003974 } 003975 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003976 p->pc = (int)(pOp - aOp); 003977 db->autoCommit = (u8)(1-desiredAutoCommit); 003978 p->rc = rc = SQLITE_BUSY; 003979 goto vdbe_return; 003980 } 003981 sqlite3CloseSavepoints(db); 003982 if( p->rc==SQLITE_OK ){ 003983 rc = SQLITE_DONE; 003984 }else{ 003985 rc = SQLITE_ERROR; 003986 } 003987 goto vdbe_return; 003988 }else{ 003989 sqlite3VdbeError(p, 003990 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 003991 (iRollback)?"cannot rollback - no transaction is active": 003992 "cannot commit - no transaction is active")); 003993 003994 rc = SQLITE_ERROR; 003995 goto abort_due_to_error; 003996 } 003997 /*NOTREACHED*/ assert(0); 003998 } 003999 004000 /* Opcode: Transaction P1 P2 P3 P4 P5 004001 ** 004002 ** Begin a transaction on database P1 if a transaction is not already 004003 ** active. 004004 ** If P2 is non-zero, then a write-transaction is started, or if a 004005 ** read-transaction is already active, it is upgraded to a write-transaction. 004006 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 004007 ** then an exclusive transaction is started. 004008 ** 004009 ** P1 is the index of the database file on which the transaction is 004010 ** started. Index 0 is the main database file and index 1 is the 004011 ** file used for temporary tables. Indices of 2 or more are used for 004012 ** attached databases. 004013 ** 004014 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 004015 ** true (this flag is set if the Vdbe may modify more than one row and may 004016 ** throw an ABORT exception), a statement transaction may also be opened. 004017 ** More specifically, a statement transaction is opened iff the database 004018 ** connection is currently not in autocommit mode, or if there are other 004019 ** active statements. A statement transaction allows the changes made by this 004020 ** VDBE to be rolled back after an error without having to roll back the 004021 ** entire transaction. If no error is encountered, the statement transaction 004022 ** will automatically commit when the VDBE halts. 004023 ** 004024 ** If P5!=0 then this opcode also checks the schema cookie against P3 004025 ** and the schema generation counter against P4. 004026 ** The cookie changes its value whenever the database schema changes. 004027 ** This operation is used to detect when that the cookie has changed 004028 ** and that the current process needs to reread the schema. If the schema 004029 ** cookie in P3 differs from the schema cookie in the database header or 004030 ** if the schema generation counter in P4 differs from the current 004031 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 004032 ** halts. The sqlite3_step() wrapper function might then reprepare the 004033 ** statement and rerun it from the beginning. 004034 */ 004035 case OP_Transaction: { 004036 Btree *pBt; 004037 Db *pDb; 004038 int iMeta = 0; 004039 004040 assert( p->bIsReader ); 004041 assert( p->readOnly==0 || pOp->p2==0 ); 004042 assert( pOp->p2>=0 && pOp->p2<=2 ); 004043 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004044 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004045 assert( rc==SQLITE_OK ); 004046 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 004047 if( db->flags & SQLITE_QueryOnly ){ 004048 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 004049 rc = SQLITE_READONLY; 004050 }else{ 004051 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 004052 ** transaction */ 004053 rc = SQLITE_CORRUPT; 004054 } 004055 goto abort_due_to_error; 004056 } 004057 pDb = &db->aDb[pOp->p1]; 004058 pBt = pDb->pBt; 004059 004060 if( pBt ){ 004061 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 004062 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 004063 testcase( rc==SQLITE_BUSY_RECOVERY ); 004064 if( rc!=SQLITE_OK ){ 004065 if( (rc&0xff)==SQLITE_BUSY ){ 004066 p->pc = (int)(pOp - aOp); 004067 p->rc = rc; 004068 goto vdbe_return; 004069 } 004070 goto abort_due_to_error; 004071 } 004072 004073 if( p->usesStmtJournal 004074 && pOp->p2 004075 && (db->autoCommit==0 || db->nVdbeRead>1) 004076 ){ 004077 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 004078 if( p->iStatement==0 ){ 004079 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 004080 db->nStatement++; 004081 p->iStatement = db->nSavepoint + db->nStatement; 004082 } 004083 004084 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 004085 if( rc==SQLITE_OK ){ 004086 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 004087 } 004088 004089 /* Store the current value of the database handles deferred constraint 004090 ** counter. If the statement transaction needs to be rolled back, 004091 ** the value of this counter needs to be restored too. */ 004092 p->nStmtDefCons = db->nDeferredCons; 004093 p->nStmtDefImmCons = db->nDeferredImmCons; 004094 } 004095 } 004096 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 004097 if( rc==SQLITE_OK 004098 && pOp->p5 004099 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 004100 ){ 004101 /* 004102 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 004103 ** version is checked to ensure that the schema has not changed since the 004104 ** SQL statement was prepared. 004105 */ 004106 sqlite3DbFree(db, p->zErrMsg); 004107 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 004108 /* If the schema-cookie from the database file matches the cookie 004109 ** stored with the in-memory representation of the schema, do 004110 ** not reload the schema from the database file. 004111 ** 004112 ** If virtual-tables are in use, this is not just an optimization. 004113 ** Often, v-tables store their data in other SQLite tables, which 004114 ** are queried from within xNext() and other v-table methods using 004115 ** prepared queries. If such a query is out-of-date, we do not want to 004116 ** discard the database schema, as the user code implementing the 004117 ** v-table would have to be ready for the sqlite3_vtab structure itself 004118 ** to be invalidated whenever sqlite3_step() is called from within 004119 ** a v-table method. 004120 */ 004121 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 004122 sqlite3ResetOneSchema(db, pOp->p1); 004123 } 004124 p->expired = 1; 004125 rc = SQLITE_SCHEMA; 004126 004127 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 004128 ** from being modified in sqlite3VdbeHalt(). If this statement is 004129 ** reprepared, changeCntOn will be set again. */ 004130 p->changeCntOn = 0; 004131 } 004132 if( rc ) goto abort_due_to_error; 004133 break; 004134 } 004135 004136 /* Opcode: ReadCookie P1 P2 P3 * * 004137 ** 004138 ** Read cookie number P3 from database P1 and write it into register P2. 004139 ** P3==1 is the schema version. P3==2 is the database format. 004140 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 004141 ** the main database file and P1==1 is the database file used to store 004142 ** temporary tables. 004143 ** 004144 ** There must be a read-lock on the database (either a transaction 004145 ** must be started or there must be an open cursor) before 004146 ** executing this instruction. 004147 */ 004148 case OP_ReadCookie: { /* out2 */ 004149 int iMeta; 004150 int iDb; 004151 int iCookie; 004152 004153 assert( p->bIsReader ); 004154 iDb = pOp->p1; 004155 iCookie = pOp->p3; 004156 assert( pOp->p3<SQLITE_N_BTREE_META ); 004157 assert( iDb>=0 && iDb<db->nDb ); 004158 assert( db->aDb[iDb].pBt!=0 ); 004159 assert( DbMaskTest(p->btreeMask, iDb) ); 004160 004161 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 004162 pOut = out2Prerelease(p, pOp); 004163 pOut->u.i = iMeta; 004164 break; 004165 } 004166 004167 /* Opcode: SetCookie P1 P2 P3 * P5 004168 ** 004169 ** Write the integer value P3 into cookie number P2 of database P1. 004170 ** P2==1 is the schema version. P2==2 is the database format. 004171 ** P2==3 is the recommended pager cache 004172 ** size, and so forth. P1==0 is the main database file and P1==1 is the 004173 ** database file used to store temporary tables. 004174 ** 004175 ** A transaction must be started before executing this opcode. 004176 ** 004177 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 004178 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 004179 ** has P5 set to 1, so that the internal schema version will be different 004180 ** from the database schema version, resulting in a schema reset. 004181 */ 004182 case OP_SetCookie: { 004183 Db *pDb; 004184 004185 sqlite3VdbeIncrWriteCounter(p, 0); 004186 assert( pOp->p2<SQLITE_N_BTREE_META ); 004187 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004188 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004189 assert( p->readOnly==0 ); 004190 pDb = &db->aDb[pOp->p1]; 004191 assert( pDb->pBt!=0 ); 004192 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 004193 /* See note about index shifting on OP_ReadCookie */ 004194 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 004195 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 004196 /* When the schema cookie changes, record the new cookie internally */ 004197 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 004198 db->mDbFlags |= DBFLAG_SchemaChange; 004199 sqlite3FkClearTriggerCache(db, pOp->p1); 004200 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 004201 /* Record changes in the file format */ 004202 pDb->pSchema->file_format = pOp->p3; 004203 } 004204 if( pOp->p1==1 ){ 004205 /* Invalidate all prepared statements whenever the TEMP database 004206 ** schema is changed. Ticket #1644 */ 004207 sqlite3ExpirePreparedStatements(db, 0); 004208 p->expired = 0; 004209 } 004210 if( rc ) goto abort_due_to_error; 004211 break; 004212 } 004213 004214 /* Opcode: OpenRead P1 P2 P3 P4 P5 004215 ** Synopsis: root=P2 iDb=P3 004216 ** 004217 ** Open a read-only cursor for the database table whose root page is 004218 ** P2 in a database file. The database file is determined by P3. 004219 ** P3==0 means the main database, P3==1 means the database used for 004220 ** temporary tables, and P3>1 means used the corresponding attached 004221 ** database. Give the new cursor an identifier of P1. The P1 004222 ** values need not be contiguous but all P1 values should be small integers. 004223 ** It is an error for P1 to be negative. 004224 ** 004225 ** Allowed P5 bits: 004226 ** <ul> 004227 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004228 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004229 ** of OP_SeekLE/OP_IdxLT) 004230 ** </ul> 004231 ** 004232 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004233 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004234 ** object, then table being opened must be an [index b-tree] where the 004235 ** KeyInfo object defines the content and collating 004236 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004237 ** value, then the table being opened must be a [table b-tree] with a 004238 ** number of columns no less than the value of P4. 004239 ** 004240 ** See also: OpenWrite, ReopenIdx 004241 */ 004242 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 004243 ** Synopsis: root=P2 iDb=P3 004244 ** 004245 ** The ReopenIdx opcode works like OP_OpenRead except that it first 004246 ** checks to see if the cursor on P1 is already open on the same 004247 ** b-tree and if it is this opcode becomes a no-op. In other words, 004248 ** if the cursor is already open, do not reopen it. 004249 ** 004250 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 004251 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 004252 ** be the same as every other ReopenIdx or OpenRead for the same cursor 004253 ** number. 004254 ** 004255 ** Allowed P5 bits: 004256 ** <ul> 004257 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004258 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004259 ** of OP_SeekLE/OP_IdxLT) 004260 ** </ul> 004261 ** 004262 ** See also: OP_OpenRead, OP_OpenWrite 004263 */ 004264 /* Opcode: OpenWrite P1 P2 P3 P4 P5 004265 ** Synopsis: root=P2 iDb=P3 004266 ** 004267 ** Open a read/write cursor named P1 on the table or index whose root 004268 ** page is P2 (or whose root page is held in register P2 if the 004269 ** OPFLAG_P2ISREG bit is set in P5 - see below). 004270 ** 004271 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004272 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004273 ** object, then table being opened must be an [index b-tree] where the 004274 ** KeyInfo object defines the content and collating 004275 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004276 ** value, then the table being opened must be a [table b-tree] with a 004277 ** number of columns no less than the value of P4. 004278 ** 004279 ** Allowed P5 bits: 004280 ** <ul> 004281 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004282 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004283 ** of OP_SeekLE/OP_IdxLT) 004284 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 004285 ** and subsequently delete entries in an index btree. This is a 004286 ** hint to the storage engine that the storage engine is allowed to 004287 ** ignore. The hint is not used by the official SQLite b*tree storage 004288 ** engine, but is used by COMDB2. 004289 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 004290 ** as the root page, not the value of P2 itself. 004291 ** </ul> 004292 ** 004293 ** This instruction works like OpenRead except that it opens the cursor 004294 ** in read/write mode. 004295 ** 004296 ** See also: OP_OpenRead, OP_ReopenIdx 004297 */ 004298 case OP_ReopenIdx: { /* ncycle */ 004299 int nField; 004300 KeyInfo *pKeyInfo; 004301 u32 p2; 004302 int iDb; 004303 int wrFlag; 004304 Btree *pX; 004305 VdbeCursor *pCur; 004306 Db *pDb; 004307 004308 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004309 assert( pOp->p4type==P4_KEYINFO ); 004310 pCur = p->apCsr[pOp->p1]; 004311 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 004312 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 004313 assert( pCur->eCurType==CURTYPE_BTREE ); 004314 sqlite3BtreeClearCursor(pCur->uc.pCursor); 004315 goto open_cursor_set_hints; 004316 } 004317 /* If the cursor is not currently open or is open on a different 004318 ** index, then fall through into OP_OpenRead to force a reopen */ 004319 case OP_OpenRead: /* ncycle */ 004320 case OP_OpenWrite: 004321 004322 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004323 assert( p->bIsReader ); 004324 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 004325 || p->readOnly==0 ); 004326 004327 if( p->expired==1 ){ 004328 rc = SQLITE_ABORT_ROLLBACK; 004329 goto abort_due_to_error; 004330 } 004331 004332 nField = 0; 004333 pKeyInfo = 0; 004334 p2 = (u32)pOp->p2; 004335 iDb = pOp->p3; 004336 assert( iDb>=0 && iDb<db->nDb ); 004337 assert( DbMaskTest(p->btreeMask, iDb) ); 004338 pDb = &db->aDb[iDb]; 004339 pX = pDb->pBt; 004340 assert( pX!=0 ); 004341 if( pOp->opcode==OP_OpenWrite ){ 004342 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 004343 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 004344 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 004345 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 004346 p->minWriteFileFormat = pDb->pSchema->file_format; 004347 } 004348 if( pOp->p5 & OPFLAG_P2ISREG ){ 004349 assert( p2>0 ); 004350 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 004351 pIn2 = &aMem[p2]; 004352 assert( memIsValid(pIn2) ); 004353 assert( (pIn2->flags & MEM_Int)!=0 ); 004354 sqlite3VdbeMemIntegerify(pIn2); 004355 p2 = (int)pIn2->u.i; 004356 /* The p2 value always comes from a prior OP_CreateBtree opcode and 004357 ** that opcode will always set the p2 value to 2 or more or else fail. 004358 ** If there were a failure, the prepared statement would have halted 004359 ** before reaching this instruction. */ 004360 assert( p2>=2 ); 004361 } 004362 }else{ 004363 wrFlag = 0; 004364 assert( (pOp->p5 & OPFLAG_P2ISREG)==0 ); 004365 } 004366 if( pOp->p4type==P4_KEYINFO ){ 004367 pKeyInfo = pOp->p4.pKeyInfo; 004368 assert( pKeyInfo->enc==ENC(db) ); 004369 assert( pKeyInfo->db==db ); 004370 nField = pKeyInfo->nAllField; 004371 }else if( pOp->p4type==P4_INT32 ){ 004372 nField = pOp->p4.i; 004373 } 004374 assert( pOp->p1>=0 ); 004375 assert( nField>=0 ); 004376 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 004377 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 004378 if( pCur==0 ) goto no_mem; 004379 pCur->iDb = iDb; 004380 pCur->nullRow = 1; 004381 pCur->isOrdered = 1; 004382 pCur->pgnoRoot = p2; 004383 #ifdef SQLITE_DEBUG 004384 pCur->wrFlag = wrFlag; 004385 #endif 004386 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 004387 pCur->pKeyInfo = pKeyInfo; 004388 /* Set the VdbeCursor.isTable variable. Previous versions of 004389 ** SQLite used to check if the root-page flags were sane at this point 004390 ** and report database corruption if they were not, but this check has 004391 ** since moved into the btree layer. */ 004392 pCur->isTable = pOp->p4type!=P4_KEYINFO; 004393 004394 open_cursor_set_hints: 004395 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 004396 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 004397 testcase( pOp->p5 & OPFLAG_BULKCSR ); 004398 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 004399 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 004400 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 004401 if( rc ) goto abort_due_to_error; 004402 break; 004403 } 004404 004405 /* Opcode: OpenDup P1 P2 * * * 004406 ** 004407 ** Open a new cursor P1 that points to the same ephemeral table as 004408 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 004409 ** opcode. Only ephemeral cursors may be duplicated. 004410 ** 004411 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 004412 */ 004413 case OP_OpenDup: { /* ncycle */ 004414 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 004415 VdbeCursor *pCx; /* The new cursor */ 004416 004417 pOrig = p->apCsr[pOp->p2]; 004418 assert( pOrig ); 004419 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 004420 004421 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 004422 if( pCx==0 ) goto no_mem; 004423 pCx->nullRow = 1; 004424 pCx->isEphemeral = 1; 004425 pCx->pKeyInfo = pOrig->pKeyInfo; 004426 pCx->isTable = pOrig->isTable; 004427 pCx->pgnoRoot = pOrig->pgnoRoot; 004428 pCx->isOrdered = pOrig->isOrdered; 004429 pCx->ub.pBtx = pOrig->ub.pBtx; 004430 pCx->noReuse = 1; 004431 pOrig->noReuse = 1; 004432 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004433 pCx->pKeyInfo, pCx->uc.pCursor); 004434 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 004435 ** opened for a database. Since there is already an open cursor when this 004436 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 004437 assert( rc==SQLITE_OK ); 004438 break; 004439 } 004440 004441 004442 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 004443 ** Synopsis: nColumn=P2 004444 ** 004445 ** Open a new cursor P1 to a transient table. 004446 ** The cursor is always opened read/write even if 004447 ** the main database is read-only. The ephemeral 004448 ** table is deleted automatically when the cursor is closed. 004449 ** 004450 ** If the cursor P1 is already opened on an ephemeral table, the table 004451 ** is cleared (all content is erased). 004452 ** 004453 ** P2 is the number of columns in the ephemeral table. 004454 ** The cursor points to a BTree table if P4==0 and to a BTree index 004455 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 004456 ** that defines the format of keys in the index. 004457 ** 004458 ** The P5 parameter can be a mask of the BTREE_* flags defined 004459 ** in btree.h. These flags control aspects of the operation of 004460 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 004461 ** added automatically. 004462 ** 004463 ** If P3 is positive, then reg[P3] is modified slightly so that it 004464 ** can be used as zero-length data for OP_Insert. This is an optimization 004465 ** that avoids an extra OP_Blob opcode to initialize that register. 004466 */ 004467 /* Opcode: OpenAutoindex P1 P2 * P4 * 004468 ** Synopsis: nColumn=P2 004469 ** 004470 ** This opcode works the same as OP_OpenEphemeral. It has a 004471 ** different name to distinguish its use. Tables created using 004472 ** by this opcode will be used for automatically created transient 004473 ** indices in joins. 004474 */ 004475 case OP_OpenAutoindex: /* ncycle */ 004476 case OP_OpenEphemeral: { /* ncycle */ 004477 VdbeCursor *pCx; 004478 KeyInfo *pKeyInfo; 004479 004480 static const int vfsFlags = 004481 SQLITE_OPEN_READWRITE | 004482 SQLITE_OPEN_CREATE | 004483 SQLITE_OPEN_EXCLUSIVE | 004484 SQLITE_OPEN_DELETEONCLOSE | 004485 SQLITE_OPEN_TRANSIENT_DB; 004486 assert( pOp->p1>=0 ); 004487 assert( pOp->p2>=0 ); 004488 if( pOp->p3>0 ){ 004489 /* Make register reg[P3] into a value that can be used as the data 004490 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 004491 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 004492 assert( pOp->opcode==OP_OpenEphemeral ); 004493 assert( aMem[pOp->p3].flags & MEM_Null ); 004494 aMem[pOp->p3].n = 0; 004495 aMem[pOp->p3].z = ""; 004496 } 004497 pCx = p->apCsr[pOp->p1]; 004498 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 004499 /* If the ephemeral table is already open and has no duplicates from 004500 ** OP_OpenDup, then erase all existing content so that the table is 004501 ** empty again, rather than creating a new table. */ 004502 assert( pCx->isEphemeral ); 004503 pCx->seqCount = 0; 004504 pCx->cacheStatus = CACHE_STALE; 004505 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 004506 }else{ 004507 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 004508 if( pCx==0 ) goto no_mem; 004509 pCx->isEphemeral = 1; 004510 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 004511 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 004512 vfsFlags); 004513 if( rc==SQLITE_OK ){ 004514 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 004515 if( rc==SQLITE_OK ){ 004516 /* If a transient index is required, create it by calling 004517 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 004518 ** opening it. If a transient table is required, just use the 004519 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 004520 */ 004521 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 004522 assert( pOp->p4type==P4_KEYINFO ); 004523 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 004524 BTREE_BLOBKEY | pOp->p5); 004525 if( rc==SQLITE_OK ){ 004526 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 004527 assert( pKeyInfo->db==db ); 004528 assert( pKeyInfo->enc==ENC(db) ); 004529 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004530 pKeyInfo, pCx->uc.pCursor); 004531 } 004532 pCx->isTable = 0; 004533 }else{ 004534 pCx->pgnoRoot = SCHEMA_ROOT; 004535 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 004536 0, pCx->uc.pCursor); 004537 pCx->isTable = 1; 004538 } 004539 } 004540 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 004541 if( rc ){ 004542 assert( !sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) ); 004543 sqlite3BtreeClose(pCx->ub.pBtx); 004544 }else{ 004545 assert( sqlite3BtreeClosesWithCursor(pCx->ub.pBtx, pCx->uc.pCursor) ); 004546 } 004547 } 004548 } 004549 if( rc ) goto abort_due_to_error; 004550 pCx->nullRow = 1; 004551 break; 004552 } 004553 004554 /* Opcode: SorterOpen P1 P2 P3 P4 * 004555 ** 004556 ** This opcode works like OP_OpenEphemeral except that it opens 004557 ** a transient index that is specifically designed to sort large 004558 ** tables using an external merge-sort algorithm. 004559 ** 004560 ** If argument P3 is non-zero, then it indicates that the sorter may 004561 ** assume that a stable sort considering the first P3 fields of each 004562 ** key is sufficient to produce the required results. 004563 */ 004564 case OP_SorterOpen: { 004565 VdbeCursor *pCx; 004566 004567 assert( pOp->p1>=0 ); 004568 assert( pOp->p2>=0 ); 004569 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 004570 if( pCx==0 ) goto no_mem; 004571 pCx->pKeyInfo = pOp->p4.pKeyInfo; 004572 assert( pCx->pKeyInfo->db==db ); 004573 assert( pCx->pKeyInfo->enc==ENC(db) ); 004574 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 004575 if( rc ) goto abort_due_to_error; 004576 break; 004577 } 004578 004579 /* Opcode: SequenceTest P1 P2 * * * 004580 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 004581 ** 004582 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 004583 ** to P2. Regardless of whether or not the jump is taken, increment the 004584 ** the sequence value. 004585 */ 004586 case OP_SequenceTest: { 004587 VdbeCursor *pC; 004588 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004589 pC = p->apCsr[pOp->p1]; 004590 assert( isSorter(pC) ); 004591 if( (pC->seqCount++)==0 ){ 004592 goto jump_to_p2; 004593 } 004594 break; 004595 } 004596 004597 /* Opcode: OpenPseudo P1 P2 P3 * * 004598 ** Synopsis: P3 columns in r[P2] 004599 ** 004600 ** Open a new cursor that points to a fake table that contains a single 004601 ** row of data. The content of that one row is the content of memory 004602 ** register P2. In other words, cursor P1 becomes an alias for the 004603 ** MEM_Blob content contained in register P2. 004604 ** 004605 ** A pseudo-table created by this opcode is used to hold a single 004606 ** row output from the sorter so that the row can be decomposed into 004607 ** individual columns using the OP_Column opcode. The OP_Column opcode 004608 ** is the only cursor opcode that works with a pseudo-table. 004609 ** 004610 ** P3 is the number of fields in the records that will be stored by 004611 ** the pseudo-table. If P2 is 0 or negative then the pseudo-cursor 004612 ** will return NULL for every column. 004613 */ 004614 case OP_OpenPseudo: { 004615 VdbeCursor *pCx; 004616 004617 assert( pOp->p1>=0 ); 004618 assert( pOp->p3>=0 ); 004619 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 004620 if( pCx==0 ) goto no_mem; 004621 pCx->nullRow = 1; 004622 pCx->seekResult = pOp->p2; 004623 pCx->isTable = 1; 004624 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 004625 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 004626 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 004627 ** which is a performance optimization */ 004628 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 004629 assert( pOp->p5==0 ); 004630 break; 004631 } 004632 004633 /* Opcode: Close P1 * * * * 004634 ** 004635 ** Close a cursor previously opened as P1. If P1 is not 004636 ** currently open, this instruction is a no-op. 004637 */ 004638 case OP_Close: { /* ncycle */ 004639 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004640 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 004641 p->apCsr[pOp->p1] = 0; 004642 break; 004643 } 004644 004645 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 004646 /* Opcode: ColumnsUsed P1 * * P4 * 004647 ** 004648 ** This opcode (which only exists if SQLite was compiled with 004649 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 004650 ** table or index for cursor P1 are used. P4 is a 64-bit integer 004651 ** (P4_INT64) in which the first 63 bits are one for each of the 004652 ** first 63 columns of the table or index that are actually used 004653 ** by the cursor. The high-order bit is set if any column after 004654 ** the 64th is used. 004655 */ 004656 case OP_ColumnsUsed: { 004657 VdbeCursor *pC; 004658 pC = p->apCsr[pOp->p1]; 004659 assert( pC->eCurType==CURTYPE_BTREE ); 004660 pC->maskUsed = *(u64*)pOp->p4.pI64; 004661 break; 004662 } 004663 #endif 004664 004665 /* Opcode: SeekGE P1 P2 P3 P4 * 004666 ** Synopsis: key=r[P3@P4] 004667 ** 004668 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004669 ** use the value in register P3 as the key. If cursor P1 refers 004670 ** to an SQL index, then P3 is the first in an array of P4 registers 004671 ** that are used as an unpacked index key. 004672 ** 004673 ** Reposition cursor P1 so that it points to the smallest entry that 004674 ** is greater than or equal to the key value. If there are no records 004675 ** greater than or equal to the key and P2 is not zero, then jump to P2. 004676 ** 004677 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004678 ** opcode will either land on a record that exactly matches the key, or 004679 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004680 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004681 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 004682 ** IdxGT opcode will be used on subsequent loop iterations. The 004683 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004684 ** is an equality search. 004685 ** 004686 ** This opcode leaves the cursor configured to move in forward order, 004687 ** from the beginning toward the end. In other words, the cursor is 004688 ** configured to use Next, not Prev. 004689 ** 004690 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 004691 */ 004692 /* Opcode: SeekGT P1 P2 P3 P4 * 004693 ** Synopsis: key=r[P3@P4] 004694 ** 004695 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004696 ** use the value in register P3 as a key. If cursor P1 refers 004697 ** to an SQL index, then P3 is the first in an array of P4 registers 004698 ** that are used as an unpacked index key. 004699 ** 004700 ** Reposition cursor P1 so that it points to the smallest entry that 004701 ** is greater than the key value. If there are no records greater than 004702 ** the key and P2 is not zero, then jump to P2. 004703 ** 004704 ** This opcode leaves the cursor configured to move in forward order, 004705 ** from the beginning toward the end. In other words, the cursor is 004706 ** configured to use Next, not Prev. 004707 ** 004708 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 004709 */ 004710 /* Opcode: SeekLT P1 P2 P3 P4 * 004711 ** Synopsis: key=r[P3@P4] 004712 ** 004713 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004714 ** use the value in register P3 as a key. If cursor P1 refers 004715 ** to an SQL index, then P3 is the first in an array of P4 registers 004716 ** that are used as an unpacked index key. 004717 ** 004718 ** Reposition cursor P1 so that it points to the largest entry that 004719 ** is less than the key value. If there are no records less than 004720 ** the key and P2 is not zero, then jump to P2. 004721 ** 004722 ** This opcode leaves the cursor configured to move in reverse order, 004723 ** from the end toward the beginning. In other words, the cursor is 004724 ** configured to use Prev, not Next. 004725 ** 004726 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 004727 */ 004728 /* Opcode: SeekLE P1 P2 P3 P4 * 004729 ** Synopsis: key=r[P3@P4] 004730 ** 004731 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004732 ** use the value in register P3 as a key. If cursor P1 refers 004733 ** to an SQL index, then P3 is the first in an array of P4 registers 004734 ** that are used as an unpacked index key. 004735 ** 004736 ** Reposition cursor P1 so that it points to the largest entry that 004737 ** is less than or equal to the key value. If there are no records 004738 ** less than or equal to the key and P2 is not zero, then jump to P2. 004739 ** 004740 ** This opcode leaves the cursor configured to move in reverse order, 004741 ** from the end toward the beginning. In other words, the cursor is 004742 ** configured to use Prev, not Next. 004743 ** 004744 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004745 ** opcode will either land on a record that exactly matches the key, or 004746 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004747 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004748 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 004749 ** IdxGE opcode will be used on subsequent loop iterations. The 004750 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004751 ** is an equality search. 004752 ** 004753 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 004754 */ 004755 case OP_SeekLT: /* jump0, in3, group, ncycle */ 004756 case OP_SeekLE: /* jump0, in3, group, ncycle */ 004757 case OP_SeekGE: /* jump0, in3, group, ncycle */ 004758 case OP_SeekGT: { /* jump0, in3, group, ncycle */ 004759 int res; /* Comparison result */ 004760 int oc; /* Opcode */ 004761 VdbeCursor *pC; /* The cursor to seek */ 004762 UnpackedRecord r; /* The key to seek for */ 004763 int nField; /* Number of columns or fields in the key */ 004764 i64 iKey; /* The rowid we are to seek to */ 004765 int eqOnly; /* Only interested in == results */ 004766 004767 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004768 assert( pOp->p2!=0 ); 004769 pC = p->apCsr[pOp->p1]; 004770 assert( pC!=0 ); 004771 assert( pC->eCurType==CURTYPE_BTREE ); 004772 assert( OP_SeekLE == OP_SeekLT+1 ); 004773 assert( OP_SeekGE == OP_SeekLT+2 ); 004774 assert( OP_SeekGT == OP_SeekLT+3 ); 004775 assert( pC->isOrdered ); 004776 assert( pC->uc.pCursor!=0 ); 004777 oc = pOp->opcode; 004778 eqOnly = 0; 004779 pC->nullRow = 0; 004780 #ifdef SQLITE_DEBUG 004781 pC->seekOp = pOp->opcode; 004782 #endif 004783 004784 pC->deferredMoveto = 0; 004785 pC->cacheStatus = CACHE_STALE; 004786 if( pC->isTable ){ 004787 u16 flags3, newType; 004788 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 004789 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 004790 || CORRUPT_DB ); 004791 004792 /* The input value in P3 might be of any type: integer, real, string, 004793 ** blob, or NULL. But it needs to be an integer before we can do 004794 ** the seek, so convert it. */ 004795 pIn3 = &aMem[pOp->p3]; 004796 flags3 = pIn3->flags; 004797 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 004798 applyNumericAffinity(pIn3, 0); 004799 } 004800 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 004801 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 004802 pIn3->flags = flags3; /* But convert the type back to its original */ 004803 004804 /* If the P3 value could not be converted into an integer without 004805 ** loss of information, then special processing is required... */ 004806 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 004807 int c; 004808 if( (newType & MEM_Real)==0 ){ 004809 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 004810 VdbeBranchTaken(1,2); 004811 goto jump_to_p2; 004812 }else{ 004813 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 004814 if( rc!=SQLITE_OK ) goto abort_due_to_error; 004815 goto seek_not_found; 004816 } 004817 } 004818 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 004819 004820 /* If the approximation iKey is larger than the actual real search 004821 ** term, substitute >= for > and < for <=. e.g. if the search term 004822 ** is 4.9 and the integer approximation 5: 004823 ** 004824 ** (x > 4.9) -> (x >= 5) 004825 ** (x <= 4.9) -> (x < 5) 004826 */ 004827 if( c>0 ){ 004828 assert( OP_SeekGE==(OP_SeekGT-1) ); 004829 assert( OP_SeekLT==(OP_SeekLE-1) ); 004830 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 004831 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 004832 } 004833 004834 /* If the approximation iKey is smaller than the actual real search 004835 ** term, substitute <= for < and > for >=. */ 004836 else if( c<0 ){ 004837 assert( OP_SeekLE==(OP_SeekLT+1) ); 004838 assert( OP_SeekGT==(OP_SeekGE+1) ); 004839 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 004840 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 004841 } 004842 } 004843 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 004844 pC->movetoTarget = iKey; /* Used by OP_Delete */ 004845 if( rc!=SQLITE_OK ){ 004846 goto abort_due_to_error; 004847 } 004848 }else{ 004849 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 004850 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 004851 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 004852 ** with the same key. 004853 */ 004854 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 004855 eqOnly = 1; 004856 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 004857 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004858 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 004859 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 004860 assert( pOp[1].p1==pOp[0].p1 ); 004861 assert( pOp[1].p2==pOp[0].p2 ); 004862 assert( pOp[1].p3==pOp[0].p3 ); 004863 assert( pOp[1].p4.i==pOp[0].p4.i ); 004864 } 004865 004866 nField = pOp->p4.i; 004867 assert( pOp->p4type==P4_INT32 ); 004868 assert( nField>0 ); 004869 r.pKeyInfo = pC->pKeyInfo; 004870 r.nField = (u16)nField; 004871 004872 /* The next line of code computes as follows, only faster: 004873 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 004874 ** r.default_rc = -1; 004875 ** }else{ 004876 ** r.default_rc = +1; 004877 ** } 004878 */ 004879 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 004880 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 004881 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 004882 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 004883 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 004884 004885 r.aMem = &aMem[pOp->p3]; 004886 #ifdef SQLITE_DEBUG 004887 { 004888 int i; 004889 for(i=0; i<r.nField; i++){ 004890 assert( memIsValid(&r.aMem[i]) ); 004891 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 004892 } 004893 } 004894 #endif 004895 r.eqSeen = 0; 004896 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 004897 if( rc!=SQLITE_OK ){ 004898 goto abort_due_to_error; 004899 } 004900 if( eqOnly && r.eqSeen==0 ){ 004901 assert( res!=0 ); 004902 goto seek_not_found; 004903 } 004904 } 004905 #ifdef SQLITE_TEST 004906 sqlite3_search_count++; 004907 #endif 004908 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 004909 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 004910 res = 0; 004911 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 004912 if( rc!=SQLITE_OK ){ 004913 if( rc==SQLITE_DONE ){ 004914 rc = SQLITE_OK; 004915 res = 1; 004916 }else{ 004917 goto abort_due_to_error; 004918 } 004919 } 004920 }else{ 004921 res = 0; 004922 } 004923 }else{ 004924 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 004925 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 004926 res = 0; 004927 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 004928 if( rc!=SQLITE_OK ){ 004929 if( rc==SQLITE_DONE ){ 004930 rc = SQLITE_OK; 004931 res = 1; 004932 }else{ 004933 goto abort_due_to_error; 004934 } 004935 } 004936 }else{ 004937 /* res might be negative because the table is empty. Check to 004938 ** see if this is the case. 004939 */ 004940 res = sqlite3BtreeEof(pC->uc.pCursor); 004941 } 004942 } 004943 seek_not_found: 004944 assert( pOp->p2>0 ); 004945 VdbeBranchTaken(res!=0,2); 004946 if( res ){ 004947 goto jump_to_p2; 004948 }else if( eqOnly ){ 004949 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004950 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 004951 } 004952 break; 004953 } 004954 004955 004956 /* Opcode: SeekScan P1 P2 * * P5 004957 ** Synopsis: Scan-ahead up to P1 rows 004958 ** 004959 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 004960 ** opcode must be immediately followed by OP_SeekGE. This constraint is 004961 ** checked by assert() statements. 004962 ** 004963 ** This opcode uses the P1 through P4 operands of the subsequent 004964 ** OP_SeekGE. In the text that follows, the operands of the subsequent 004965 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 004966 ** the P1, P2 and P5 operands of this opcode are also used, and are called 004967 ** This.P1, This.P2 and This.P5. 004968 ** 004969 ** This opcode helps to optimize IN operators on a multi-column index 004970 ** where the IN operator is on the later terms of the index by avoiding 004971 ** unnecessary seeks on the btree, substituting steps to the next row 004972 ** of the b-tree instead. A correct answer is obtained if this opcode 004973 ** is omitted or is a no-op. 004974 ** 004975 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 004976 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 004977 ** to. Call this SeekGE.P3/P4 row the "target". 004978 ** 004979 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 004980 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 004981 ** 004982 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 004983 ** might be the target row, or it might be near and slightly before the 004984 ** target row, or it might be after the target row. If the cursor is 004985 ** currently before the target row, then this opcode attempts to position 004986 ** the cursor on or after the target row by invoking sqlite3BtreeStep() 004987 ** on the cursor between 1 and This.P1 times. 004988 ** 004989 ** The This.P5 parameter is a flag that indicates what to do if the 004990 ** cursor ends up pointing at a valid row that is past the target 004991 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If 004992 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 004993 ** case occurs when there are no inequality constraints to the right of 004994 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case 004995 ** occurs when there are inequality constraints to the right of the IN 004996 ** operator. In that case, the This.P2 will point either directly to or 004997 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for 004998 ** loop terminate. 004999 ** 005000 ** Possible outcomes from this opcode:<ol> 005001 ** 005002 ** <li> If the cursor is initially not pointed to any valid row, then 005003 ** fall through into the subsequent OP_SeekGE opcode. 005004 ** 005005 ** <li> If the cursor is left pointing to a row that is before the target 005006 ** row, even after making as many as This.P1 calls to 005007 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. 005008 ** 005009 ** <li> If the cursor is left pointing at the target row, either because it 005010 ** was at the target row to begin with or because one or more 005011 ** sqlite3BtreeNext() calls moved the cursor to the target row, 005012 ** then jump to This.P2.., 005013 ** 005014 ** <li> If the cursor started out before the target row and a call to 005015 ** to sqlite3BtreeNext() moved the cursor off the end of the index 005016 ** (indicating that the target row definitely does not exist in the 005017 ** btree) then jump to SeekGE.P2, ending the loop. 005018 ** 005019 ** <li> If the cursor ends up on a valid row that is past the target row 005020 ** (indicating that the target row does not exist in the btree) then 005021 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. 005022 ** </ol> 005023 */ 005024 case OP_SeekScan: { /* ncycle */ 005025 VdbeCursor *pC; 005026 int res; 005027 int nStep; 005028 UnpackedRecord r; 005029 005030 assert( pOp[1].opcode==OP_SeekGE ); 005031 005032 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the 005033 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first 005034 ** opcode past the OP_SeekGE itself. */ 005035 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 005036 #ifdef SQLITE_DEBUG 005037 if( pOp->p5==0 ){ 005038 /* There are no inequality constraints following the IN constraint. */ 005039 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 005040 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 005041 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 005042 assert( aOp[pOp->p2-1].opcode==OP_IdxGT 005043 || aOp[pOp->p2-1].opcode==OP_IdxGE ); 005044 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 005045 }else{ 005046 /* There are inequality constraints. */ 005047 assert( pOp->p2==(int)(pOp-aOp)+2 ); 005048 assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); 005049 } 005050 #endif 005051 005052 assert( pOp->p1>0 ); 005053 pC = p->apCsr[pOp[1].p1]; 005054 assert( pC!=0 ); 005055 assert( pC->eCurType==CURTYPE_BTREE ); 005056 assert( !pC->isTable ); 005057 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 005058 #ifdef SQLITE_DEBUG 005059 if( db->flags&SQLITE_VdbeTrace ){ 005060 printf("... cursor not valid - fall through\n"); 005061 } 005062 #endif 005063 break; 005064 } 005065 nStep = pOp->p1; 005066 assert( nStep>=1 ); 005067 r.pKeyInfo = pC->pKeyInfo; 005068 r.nField = (u16)pOp[1].p4.i; 005069 r.default_rc = 0; 005070 r.aMem = &aMem[pOp[1].p3]; 005071 #ifdef SQLITE_DEBUG 005072 { 005073 int i; 005074 for(i=0; i<r.nField; i++){ 005075 assert( memIsValid(&r.aMem[i]) ); 005076 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 005077 } 005078 } 005079 #endif 005080 res = 0; /* Not needed. Only used to silence a warning. */ 005081 while(1){ 005082 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 005083 if( rc ) goto abort_due_to_error; 005084 if( res>0 && pOp->p5==0 ){ 005085 seekscan_search_fail: 005086 /* Jump to SeekGE.P2, ending the loop */ 005087 #ifdef SQLITE_DEBUG 005088 if( db->flags&SQLITE_VdbeTrace ){ 005089 printf("... %d steps and then skip\n", pOp->p1 - nStep); 005090 } 005091 #endif 005092 VdbeBranchTaken(1,3); 005093 pOp++; 005094 goto jump_to_p2; 005095 } 005096 if( res>=0 ){ 005097 /* Jump to This.P2, bypassing the OP_SeekGE opcode */ 005098 #ifdef SQLITE_DEBUG 005099 if( db->flags&SQLITE_VdbeTrace ){ 005100 printf("... %d steps and then success\n", pOp->p1 - nStep); 005101 } 005102 #endif 005103 VdbeBranchTaken(2,3); 005104 goto jump_to_p2; 005105 break; 005106 } 005107 if( nStep<=0 ){ 005108 #ifdef SQLITE_DEBUG 005109 if( db->flags&SQLITE_VdbeTrace ){ 005110 printf("... fall through after %d steps\n", pOp->p1); 005111 } 005112 #endif 005113 VdbeBranchTaken(0,3); 005114 break; 005115 } 005116 nStep--; 005117 pC->cacheStatus = CACHE_STALE; 005118 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 005119 if( rc ){ 005120 if( rc==SQLITE_DONE ){ 005121 rc = SQLITE_OK; 005122 goto seekscan_search_fail; 005123 }else{ 005124 goto abort_due_to_error; 005125 } 005126 } 005127 } 005128 005129 break; 005130 } 005131 005132 005133 /* Opcode: SeekHit P1 P2 P3 * * 005134 ** Synopsis: set P2<=seekHit<=P3 005135 ** 005136 ** Increase or decrease the seekHit value for cursor P1, if necessary, 005137 ** so that it is no less than P2 and no greater than P3. 005138 ** 005139 ** The seekHit integer represents the maximum of terms in an index for which 005140 ** there is known to be at least one match. If the seekHit value is smaller 005141 ** than the total number of equality terms in an index lookup, then the 005142 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 005143 ** early, thus saving work. This is part of the IN-early-out optimization. 005144 ** 005145 ** P1 must be a valid b-tree cursor. 005146 */ 005147 case OP_SeekHit: { /* ncycle */ 005148 VdbeCursor *pC; 005149 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005150 pC = p->apCsr[pOp->p1]; 005151 assert( pC!=0 ); 005152 assert( pOp->p3>=pOp->p2 ); 005153 if( pC->seekHit<pOp->p2 ){ 005154 #ifdef SQLITE_DEBUG 005155 if( db->flags&SQLITE_VdbeTrace ){ 005156 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 005157 } 005158 #endif 005159 pC->seekHit = pOp->p2; 005160 }else if( pC->seekHit>pOp->p3 ){ 005161 #ifdef SQLITE_DEBUG 005162 if( db->flags&SQLITE_VdbeTrace ){ 005163 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 005164 } 005165 #endif 005166 pC->seekHit = pOp->p3; 005167 } 005168 break; 005169 } 005170 005171 /* Opcode: IfNotOpen P1 P2 * * * 005172 ** Synopsis: if( !csr[P1] ) goto P2 005173 ** 005174 ** If cursor P1 is not open or if P1 is set to a NULL row using the 005175 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. 005176 */ 005177 case OP_IfNotOpen: { /* jump */ 005178 VdbeCursor *pCur; 005179 005180 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005181 pCur = p->apCsr[pOp->p1]; 005182 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); 005183 if( pCur==0 || pCur->nullRow ){ 005184 goto jump_to_p2_and_check_for_interrupt; 005185 } 005186 break; 005187 } 005188 005189 /* Opcode: Found P1 P2 P3 P4 * 005190 ** Synopsis: key=r[P3@P4] 005191 ** 005192 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005193 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005194 ** record. 005195 ** 005196 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005197 ** is a prefix of any entry in P1 then a jump is made to P2 and 005198 ** P1 is left pointing at the matching entry. 005199 ** 005200 ** This operation leaves the cursor in a state where it can be 005201 ** advanced in the forward direction. The Next instruction will work, 005202 ** but not the Prev instruction. 005203 ** 005204 ** See also: NotFound, NoConflict, NotExists. SeekGe 005205 */ 005206 /* Opcode: NotFound P1 P2 P3 P4 * 005207 ** Synopsis: key=r[P3@P4] 005208 ** 005209 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005210 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005211 ** record. 005212 ** 005213 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005214 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 005215 ** does contain an entry whose prefix matches the P3/P4 record then control 005216 ** falls through to the next instruction and P1 is left pointing at the 005217 ** matching entry. 005218 ** 005219 ** This operation leaves the cursor in a state where it cannot be 005220 ** advanced in either direction. In other words, the Next and Prev 005221 ** opcodes do not work after this operation. 005222 ** 005223 ** See also: Found, NotExists, NoConflict, IfNoHope 005224 */ 005225 /* Opcode: IfNoHope P1 P2 P3 P4 * 005226 ** Synopsis: key=r[P3@P4] 005227 ** 005228 ** Register P3 is the first of P4 registers that form an unpacked 005229 ** record. Cursor P1 is an index btree. P2 is a jump destination. 005230 ** In other words, the operands to this opcode are the same as the 005231 ** operands to OP_NotFound and OP_IdxGT. 005232 ** 005233 ** This opcode is an optimization attempt only. If this opcode always 005234 ** falls through, the correct answer is still obtained, but extra work 005235 ** is performed. 005236 ** 005237 ** A value of N in the seekHit flag of cursor P1 means that there exists 005238 ** a key P3:N that will match some record in the index. We want to know 005239 ** if it is possible for a record P3:P4 to match some record in the 005240 ** index. If it is not possible, we can skip some work. So if seekHit 005241 ** is less than P4, attempt to find out if a match is possible by running 005242 ** OP_NotFound. 005243 ** 005244 ** This opcode is used in IN clause processing for a multi-column key. 005245 ** If an IN clause is attached to an element of the key other than the 005246 ** left-most element, and if there are no matches on the most recent 005247 ** seek over the whole key, then it might be that one of the key element 005248 ** to the left is prohibiting a match, and hence there is "no hope" of 005249 ** any match regardless of how many IN clause elements are checked. 005250 ** In such a case, we abandon the IN clause search early, using this 005251 ** opcode. The opcode name comes from the fact that the 005252 ** jump is taken if there is "no hope" of achieving a match. 005253 ** 005254 ** See also: NotFound, SeekHit 005255 */ 005256 /* Opcode: NoConflict P1 P2 P3 P4 * 005257 ** Synopsis: key=r[P3@P4] 005258 ** 005259 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005260 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005261 ** record. 005262 ** 005263 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005264 ** contains any NULL value, jump immediately to P2. If all terms of the 005265 ** record are not-NULL then a check is done to determine if any row in the 005266 ** P1 index btree has a matching key prefix. If there are no matches, jump 005267 ** immediately to P2. If there is a match, fall through and leave the P1 005268 ** cursor pointing to the matching row. 005269 ** 005270 ** This opcode is similar to OP_NotFound with the exceptions that the 005271 ** branch is always taken if any part of the search key input is NULL. 005272 ** 005273 ** This operation leaves the cursor in a state where it cannot be 005274 ** advanced in either direction. In other words, the Next and Prev 005275 ** opcodes do not work after this operation. 005276 ** 005277 ** See also: NotFound, Found, NotExists 005278 */ 005279 case OP_IfNoHope: { /* jump, in3, ncycle */ 005280 VdbeCursor *pC; 005281 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005282 pC = p->apCsr[pOp->p1]; 005283 assert( pC!=0 ); 005284 #ifdef SQLITE_DEBUG 005285 if( db->flags&SQLITE_VdbeTrace ){ 005286 printf("seekHit is %d\n", pC->seekHit); 005287 } 005288 #endif 005289 if( pC->seekHit>=pOp->p4.i ) break; 005290 /* Fall through into OP_NotFound */ 005291 /* no break */ deliberate_fall_through 005292 } 005293 case OP_NoConflict: /* jump, in3, ncycle */ 005294 case OP_NotFound: /* jump, in3, ncycle */ 005295 case OP_Found: { /* jump, in3, ncycle */ 005296 int alreadyExists; 005297 int ii; 005298 VdbeCursor *pC; 005299 UnpackedRecord *pIdxKey; 005300 UnpackedRecord r; 005301 005302 #ifdef SQLITE_TEST 005303 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 005304 #endif 005305 005306 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005307 assert( pOp->p4type==P4_INT32 ); 005308 pC = p->apCsr[pOp->p1]; 005309 assert( pC!=0 ); 005310 #ifdef SQLITE_DEBUG 005311 pC->seekOp = pOp->opcode; 005312 #endif 005313 r.aMem = &aMem[pOp->p3]; 005314 assert( pC->eCurType==CURTYPE_BTREE ); 005315 assert( pC->uc.pCursor!=0 ); 005316 assert( pC->isTable==0 ); 005317 r.nField = (u16)pOp->p4.i; 005318 if( r.nField>0 ){ 005319 /* Key values in an array of registers */ 005320 r.pKeyInfo = pC->pKeyInfo; 005321 r.default_rc = 0; 005322 #ifdef SQLITE_DEBUG 005323 (void)sqlite3FaultSim(50); /* For use by --counter in TH3 */ 005324 for(ii=0; ii<r.nField; ii++){ 005325 assert( memIsValid(&r.aMem[ii]) ); 005326 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 005327 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 005328 } 005329 #endif 005330 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 005331 }else{ 005332 /* Composite key generated by OP_MakeRecord */ 005333 assert( r.aMem->flags & MEM_Blob ); 005334 assert( pOp->opcode!=OP_NoConflict ); 005335 rc = ExpandBlob(r.aMem); 005336 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 005337 if( rc ) goto no_mem; 005338 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 005339 if( pIdxKey==0 ) goto no_mem; 005340 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 005341 pIdxKey->default_rc = 0; 005342 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 005343 sqlite3DbFreeNN(db, pIdxKey); 005344 } 005345 if( rc!=SQLITE_OK ){ 005346 goto abort_due_to_error; 005347 } 005348 alreadyExists = (pC->seekResult==0); 005349 pC->nullRow = 1-alreadyExists; 005350 pC->deferredMoveto = 0; 005351 pC->cacheStatus = CACHE_STALE; 005352 if( pOp->opcode==OP_Found ){ 005353 VdbeBranchTaken(alreadyExists!=0,2); 005354 if( alreadyExists ) goto jump_to_p2; 005355 }else{ 005356 if( !alreadyExists ){ 005357 VdbeBranchTaken(1,2); 005358 goto jump_to_p2; 005359 } 005360 if( pOp->opcode==OP_NoConflict ){ 005361 /* For the OP_NoConflict opcode, take the jump if any of the 005362 ** input fields are NULL, since any key with a NULL will not 005363 ** conflict */ 005364 for(ii=0; ii<r.nField; ii++){ 005365 if( r.aMem[ii].flags & MEM_Null ){ 005366 VdbeBranchTaken(1,2); 005367 goto jump_to_p2; 005368 } 005369 } 005370 } 005371 VdbeBranchTaken(0,2); 005372 if( pOp->opcode==OP_IfNoHope ){ 005373 pC->seekHit = pOp->p4.i; 005374 } 005375 } 005376 break; 005377 } 005378 005379 /* Opcode: SeekRowid P1 P2 P3 * * 005380 ** Synopsis: intkey=r[P3] 005381 ** 005382 ** P1 is the index of a cursor open on an SQL table btree (with integer 005383 ** keys). If register P3 does not contain an integer or if P1 does not 005384 ** contain a record with rowid P3 then jump immediately to P2. 005385 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 005386 ** a record with rowid P3 then 005387 ** leave the cursor pointing at that record and fall through to the next 005388 ** instruction. 005389 ** 005390 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 005391 ** the P3 register must be guaranteed to contain an integer value. With this 005392 ** opcode, register P3 might not contain an integer. 005393 ** 005394 ** The OP_NotFound opcode performs the same operation on index btrees 005395 ** (with arbitrary multi-value keys). 005396 ** 005397 ** This opcode leaves the cursor in a state where it cannot be advanced 005398 ** in either direction. In other words, the Next and Prev opcodes will 005399 ** not work following this opcode. 005400 ** 005401 ** See also: Found, NotFound, NoConflict, SeekRowid 005402 */ 005403 /* Opcode: NotExists P1 P2 P3 * * 005404 ** Synopsis: intkey=r[P3] 005405 ** 005406 ** P1 is the index of a cursor open on an SQL table btree (with integer 005407 ** keys). P3 is an integer rowid. If P1 does not contain a record with 005408 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 005409 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 005410 ** leave the cursor pointing at that record and fall through to the next 005411 ** instruction. 005412 ** 005413 ** The OP_SeekRowid opcode performs the same operation but also allows the 005414 ** P3 register to contain a non-integer value, in which case the jump is 005415 ** always taken. This opcode requires that P3 always contain an integer. 005416 ** 005417 ** The OP_NotFound opcode performs the same operation on index btrees 005418 ** (with arbitrary multi-value keys). 005419 ** 005420 ** This opcode leaves the cursor in a state where it cannot be advanced 005421 ** in either direction. In other words, the Next and Prev opcodes will 005422 ** not work following this opcode. 005423 ** 005424 ** See also: Found, NotFound, NoConflict, SeekRowid 005425 */ 005426 case OP_SeekRowid: { /* jump0, in3, ncycle */ 005427 VdbeCursor *pC; 005428 BtCursor *pCrsr; 005429 int res; 005430 u64 iKey; 005431 005432 pIn3 = &aMem[pOp->p3]; 005433 testcase( pIn3->flags & MEM_Int ); 005434 testcase( pIn3->flags & MEM_IntReal ); 005435 testcase( pIn3->flags & MEM_Real ); 005436 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 005437 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 005438 /* If pIn3->u.i does not contain an integer, compute iKey as the 005439 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 005440 ** into an integer without loss of information. Take care to avoid 005441 ** changing the datatype of pIn3, however, as it is used by other 005442 ** parts of the prepared statement. */ 005443 Mem x = pIn3[0]; 005444 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 005445 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 005446 iKey = x.u.i; 005447 goto notExistsWithKey; 005448 } 005449 /* Fall through into OP_NotExists */ 005450 /* no break */ deliberate_fall_through 005451 case OP_NotExists: /* jump, in3, ncycle */ 005452 pIn3 = &aMem[pOp->p3]; 005453 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 005454 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005455 iKey = pIn3->u.i; 005456 notExistsWithKey: 005457 pC = p->apCsr[pOp->p1]; 005458 assert( pC!=0 ); 005459 #ifdef SQLITE_DEBUG 005460 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 005461 #endif 005462 assert( pC->isTable ); 005463 assert( pC->eCurType==CURTYPE_BTREE ); 005464 pCrsr = pC->uc.pCursor; 005465 assert( pCrsr!=0 ); 005466 res = 0; 005467 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 005468 assert( rc==SQLITE_OK || res==0 ); 005469 pC->movetoTarget = iKey; /* Used by OP_Delete */ 005470 pC->nullRow = 0; 005471 pC->cacheStatus = CACHE_STALE; 005472 pC->deferredMoveto = 0; 005473 VdbeBranchTaken(res!=0,2); 005474 pC->seekResult = res; 005475 if( res!=0 ){ 005476 assert( rc==SQLITE_OK ); 005477 if( pOp->p2==0 ){ 005478 rc = SQLITE_CORRUPT_BKPT; 005479 }else{ 005480 goto jump_to_p2; 005481 } 005482 } 005483 if( rc ) goto abort_due_to_error; 005484 break; 005485 } 005486 005487 /* Opcode: Sequence P1 P2 * * * 005488 ** Synopsis: r[P2]=cursor[P1].ctr++ 005489 ** 005490 ** Find the next available sequence number for cursor P1. 005491 ** Write the sequence number into register P2. 005492 ** The sequence number on the cursor is incremented after this 005493 ** instruction. 005494 */ 005495 case OP_Sequence: { /* out2 */ 005496 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005497 assert( p->apCsr[pOp->p1]!=0 ); 005498 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 005499 pOut = out2Prerelease(p, pOp); 005500 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 005501 break; 005502 } 005503 005504 005505 /* Opcode: NewRowid P1 P2 P3 * * 005506 ** Synopsis: r[P2]=rowid 005507 ** 005508 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 005509 ** The record number is not previously used as a key in the database 005510 ** table that cursor P1 points to. The new record number is written 005511 ** written to register P2. 005512 ** 005513 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 005514 ** the largest previously generated record number. No new record numbers are 005515 ** allowed to be less than this value. When this value reaches its maximum, 005516 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 005517 ** generated record number. This P3 mechanism is used to help implement the 005518 ** AUTOINCREMENT feature. 005519 */ 005520 case OP_NewRowid: { /* out2 */ 005521 i64 v; /* The new rowid */ 005522 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 005523 int res; /* Result of an sqlite3BtreeLast() */ 005524 int cnt; /* Counter to limit the number of searches */ 005525 #ifndef SQLITE_OMIT_AUTOINCREMENT 005526 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 005527 VdbeFrame *pFrame; /* Root frame of VDBE */ 005528 #endif 005529 005530 v = 0; 005531 res = 0; 005532 pOut = out2Prerelease(p, pOp); 005533 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005534 pC = p->apCsr[pOp->p1]; 005535 assert( pC!=0 ); 005536 assert( pC->isTable ); 005537 assert( pC->eCurType==CURTYPE_BTREE ); 005538 assert( pC->uc.pCursor!=0 ); 005539 { 005540 /* The next rowid or record number (different terms for the same 005541 ** thing) is obtained in a two-step algorithm. 005542 ** 005543 ** First we attempt to find the largest existing rowid and add one 005544 ** to that. But if the largest existing rowid is already the maximum 005545 ** positive integer, we have to fall through to the second 005546 ** probabilistic algorithm 005547 ** 005548 ** The second algorithm is to select a rowid at random and see if 005549 ** it already exists in the table. If it does not exist, we have 005550 ** succeeded. If the random rowid does exist, we select a new one 005551 ** and try again, up to 100 times. 005552 */ 005553 assert( pC->isTable ); 005554 005555 #ifdef SQLITE_32BIT_ROWID 005556 # define MAX_ROWID 0x7fffffff 005557 #else 005558 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 005559 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 005560 ** to provide the constant while making all compilers happy. 005561 */ 005562 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 005563 #endif 005564 005565 if( !pC->useRandomRowid ){ 005566 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 005567 if( rc!=SQLITE_OK ){ 005568 goto abort_due_to_error; 005569 } 005570 if( res ){ 005571 v = 1; /* IMP: R-61914-48074 */ 005572 }else{ 005573 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 005574 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005575 if( v>=MAX_ROWID ){ 005576 pC->useRandomRowid = 1; 005577 }else{ 005578 v++; /* IMP: R-29538-34987 */ 005579 } 005580 } 005581 } 005582 005583 #ifndef SQLITE_OMIT_AUTOINCREMENT 005584 if( pOp->p3 ){ 005585 /* Assert that P3 is a valid memory cell. */ 005586 assert( pOp->p3>0 ); 005587 if( p->pFrame ){ 005588 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 005589 /* Assert that P3 is a valid memory cell. */ 005590 assert( pOp->p3<=pFrame->nMem ); 005591 pMem = &pFrame->aMem[pOp->p3]; 005592 }else{ 005593 /* Assert that P3 is a valid memory cell. */ 005594 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 005595 pMem = &aMem[pOp->p3]; 005596 memAboutToChange(p, pMem); 005597 } 005598 assert( memIsValid(pMem) ); 005599 005600 REGISTER_TRACE(pOp->p3, pMem); 005601 sqlite3VdbeMemIntegerify(pMem); 005602 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 005603 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 005604 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 005605 goto abort_due_to_error; 005606 } 005607 if( v<pMem->u.i+1 ){ 005608 v = pMem->u.i + 1; 005609 } 005610 pMem->u.i = v; 005611 } 005612 #endif 005613 if( pC->useRandomRowid ){ 005614 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 005615 ** largest possible integer (9223372036854775807) then the database 005616 ** engine starts picking positive candidate ROWIDs at random until 005617 ** it finds one that is not previously used. */ 005618 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 005619 ** an AUTOINCREMENT table. */ 005620 cnt = 0; 005621 do{ 005622 sqlite3_randomness(sizeof(v), &v); 005623 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 005624 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 005625 0, &res))==SQLITE_OK) 005626 && (res==0) 005627 && (++cnt<100)); 005628 if( rc ) goto abort_due_to_error; 005629 if( res==0 ){ 005630 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 005631 goto abort_due_to_error; 005632 } 005633 assert( v>0 ); /* EV: R-40812-03570 */ 005634 } 005635 pC->deferredMoveto = 0; 005636 pC->cacheStatus = CACHE_STALE; 005637 } 005638 pOut->u.i = v; 005639 break; 005640 } 005641 005642 /* Opcode: Insert P1 P2 P3 P4 P5 005643 ** Synopsis: intkey=r[P3] data=r[P2] 005644 ** 005645 ** Write an entry into the table of cursor P1. A new entry is 005646 ** created if it doesn't already exist or the data for an existing 005647 ** entry is overwritten. The data is the value MEM_Blob stored in register 005648 ** number P2. The key is stored in register P3. The key must 005649 ** be a MEM_Int. 005650 ** 005651 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 005652 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 005653 ** then rowid is stored for subsequent return by the 005654 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 005655 ** 005656 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 005657 ** run faster by avoiding an unnecessary seek on cursor P1. However, 005658 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 005659 ** seeks on the cursor or if the most recent seek used a key equal to P3. 005660 ** 005661 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 005662 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 005663 ** is part of an INSERT operation. The difference is only important to 005664 ** the update hook. 005665 ** 005666 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 005667 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 005668 ** following a successful insert. 005669 ** 005670 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 005671 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 005672 ** and register P2 becomes ephemeral. If the cursor is changed, the 005673 ** value of register P2 will then change. Make sure this does not 005674 ** cause any problems.) 005675 ** 005676 ** This instruction only works on tables. The equivalent instruction 005677 ** for indices is OP_IdxInsert. 005678 */ 005679 case OP_Insert: { 005680 Mem *pData; /* MEM cell holding data for the record to be inserted */ 005681 Mem *pKey; /* MEM cell holding key for the record */ 005682 VdbeCursor *pC; /* Cursor to table into which insert is written */ 005683 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 005684 const char *zDb; /* database name - used by the update hook */ 005685 Table *pTab; /* Table structure - used by update and pre-update hooks */ 005686 BtreePayload x; /* Payload to be inserted */ 005687 005688 pData = &aMem[pOp->p2]; 005689 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005690 assert( memIsValid(pData) ); 005691 pC = p->apCsr[pOp->p1]; 005692 assert( pC!=0 ); 005693 assert( pC->eCurType==CURTYPE_BTREE ); 005694 assert( pC->deferredMoveto==0 ); 005695 assert( pC->uc.pCursor!=0 ); 005696 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 005697 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 005698 REGISTER_TRACE(pOp->p2, pData); 005699 sqlite3VdbeIncrWriteCounter(p, pC); 005700 005701 pKey = &aMem[pOp->p3]; 005702 assert( pKey->flags & MEM_Int ); 005703 assert( memIsValid(pKey) ); 005704 REGISTER_TRACE(pOp->p3, pKey); 005705 x.nKey = pKey->u.i; 005706 005707 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005708 assert( pC->iDb>=0 ); 005709 zDb = db->aDb[pC->iDb].zDbSName; 005710 pTab = pOp->p4.pTab; 005711 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 005712 }else{ 005713 pTab = 0; 005714 zDb = 0; 005715 } 005716 005717 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005718 /* Invoke the pre-update hook, if any */ 005719 if( pTab ){ 005720 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 005721 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 005722 } 005723 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 005724 /* Prevent post-update hook from running in cases when it should not */ 005725 pTab = 0; 005726 } 005727 } 005728 if( pOp->p5 & OPFLAG_ISNOOP ) break; 005729 #endif 005730 005731 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 ); 005732 if( pOp->p5 & OPFLAG_NCHANGE ){ 005733 p->nChange++; 005734 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 005735 } 005736 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 005737 x.pData = pData->z; 005738 x.nData = pData->n; 005739 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 005740 if( pData->flags & MEM_Zero ){ 005741 x.nZero = pData->u.nZero; 005742 }else{ 005743 x.nZero = 0; 005744 } 005745 x.pKey = 0; 005746 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); 005747 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 005748 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 005749 seekResult 005750 ); 005751 pC->deferredMoveto = 0; 005752 pC->cacheStatus = CACHE_STALE; 005753 colCacheCtr++; 005754 005755 /* Invoke the update-hook if required. */ 005756 if( rc ) goto abort_due_to_error; 005757 if( pTab ){ 005758 assert( db->xUpdateCallback!=0 ); 005759 assert( pTab->aCol!=0 ); 005760 db->xUpdateCallback(db->pUpdateArg, 005761 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 005762 zDb, pTab->zName, x.nKey); 005763 } 005764 break; 005765 } 005766 005767 /* Opcode: RowCell P1 P2 P3 * * 005768 ** 005769 ** P1 and P2 are both open cursors. Both must be opened on the same type 005770 ** of table - intkey or index. This opcode is used as part of copying 005771 ** the current row from P2 into P1. If the cursors are opened on intkey 005772 ** tables, register P3 contains the rowid to use with the new record in 005773 ** P1. If they are opened on index tables, P3 is not used. 005774 ** 005775 ** This opcode must be followed by either an Insert or InsertIdx opcode 005776 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 005777 */ 005778 case OP_RowCell: { 005779 VdbeCursor *pDest; /* Cursor to write to */ 005780 VdbeCursor *pSrc; /* Cursor to read from */ 005781 i64 iKey; /* Rowid value to insert with */ 005782 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 005783 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 005784 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 005785 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 005786 pDest = p->apCsr[pOp->p1]; 005787 pSrc = p->apCsr[pOp->p2]; 005788 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 005789 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 005790 if( rc!=SQLITE_OK ) goto abort_due_to_error; 005791 break; 005792 }; 005793 005794 /* Opcode: Delete P1 P2 P3 P4 P5 005795 ** 005796 ** Delete the record at which the P1 cursor is currently pointing. 005797 ** 005798 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 005799 ** the cursor will be left pointing at either the next or the previous 005800 ** record in the table. If it is left pointing at the next record, then 005801 ** the next Next instruction will be a no-op. As a result, in this case 005802 ** it is ok to delete a record from within a Next loop. If 005803 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 005804 ** left in an undefined state. 005805 ** 005806 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 005807 ** delete is one of several associated with deleting a table row and 005808 ** all its associated index entries. Exactly one of those deletes is 005809 ** the "primary" delete. The others are all on OPFLAG_FORDELETE 005810 ** cursors or else are marked with the AUXDELETE flag. 005811 ** 005812 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then 005813 ** the row change count is incremented (otherwise not). 005814 ** 005815 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the 005816 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged. 005817 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert 005818 ** with the same key, causing the btree entry to be overwritten. 005819 ** 005820 ** P1 must not be pseudo-table. It has to be a real table with 005821 ** multiple rows. 005822 ** 005823 ** If P4 is not NULL then it points to a Table object. In this case either 005824 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 005825 ** have been positioned using OP_NotFound prior to invoking this opcode in 005826 ** this case. Specifically, if one is configured, the pre-update hook is 005827 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 005828 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 005829 ** 005830 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 005831 ** of the memory cell that contains the value that the rowid of the row will 005832 ** be set to by the update. 005833 */ 005834 case OP_Delete: { 005835 VdbeCursor *pC; 005836 const char *zDb; 005837 Table *pTab; 005838 int opflags; 005839 005840 opflags = pOp->p2; 005841 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005842 pC = p->apCsr[pOp->p1]; 005843 assert( pC!=0 ); 005844 assert( pC->eCurType==CURTYPE_BTREE ); 005845 assert( pC->uc.pCursor!=0 ); 005846 assert( pC->deferredMoveto==0 ); 005847 sqlite3VdbeIncrWriteCounter(p, pC); 005848 005849 #ifdef SQLITE_DEBUG 005850 if( pOp->p4type==P4_TABLE 005851 && HasRowid(pOp->p4.pTab) 005852 && pOp->p5==0 005853 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 005854 ){ 005855 /* If p5 is zero, the seek operation that positioned the cursor prior to 005856 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 005857 ** the row that is being deleted */ 005858 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005859 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 005860 } 005861 #endif 005862 005863 /* If the update-hook or pre-update-hook will be invoked, set zDb to 005864 ** the name of the db to pass as to it. Also set local pTab to a copy 005865 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 005866 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 005867 ** VdbeCursor.movetoTarget to the current rowid. */ 005868 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005869 assert( pC->iDb>=0 ); 005870 assert( pOp->p4.pTab!=0 ); 005871 zDb = db->aDb[pC->iDb].zDbSName; 005872 pTab = pOp->p4.pTab; 005873 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 005874 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005875 } 005876 }else{ 005877 zDb = 0; 005878 pTab = 0; 005879 } 005880 005881 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005882 /* Invoke the pre-update-hook if required. */ 005883 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 005884 if( db->xPreUpdateCallback && pTab ){ 005885 assert( !(opflags & OPFLAG_ISUPDATE) 005886 || HasRowid(pTab)==0 005887 || (aMem[pOp->p3].flags & MEM_Int) 005888 ); 005889 sqlite3VdbePreUpdateHook(p, pC, 005890 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 005891 zDb, pTab, pC->movetoTarget, 005892 pOp->p3, -1 005893 ); 005894 } 005895 if( opflags & OPFLAG_ISNOOP ) break; 005896 #endif 005897 005898 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 005899 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 005900 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 005901 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 005902 005903 #ifdef SQLITE_DEBUG 005904 if( p->pFrame==0 ){ 005905 if( pC->isEphemeral==0 005906 && (pOp->p5 & OPFLAG_AUXDELETE)==0 005907 && (pC->wrFlag & OPFLAG_FORDELETE)==0 005908 ){ 005909 nExtraDelete++; 005910 } 005911 if( pOp->p2 & OPFLAG_NCHANGE ){ 005912 nExtraDelete--; 005913 } 005914 } 005915 #endif 005916 005917 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 005918 pC->cacheStatus = CACHE_STALE; 005919 colCacheCtr++; 005920 pC->seekResult = 0; 005921 if( rc ) goto abort_due_to_error; 005922 005923 /* Invoke the update-hook if required. */ 005924 if( opflags & OPFLAG_NCHANGE ){ 005925 p->nChange++; 005926 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 005927 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 005928 pC->movetoTarget); 005929 assert( pC->iDb>=0 ); 005930 } 005931 } 005932 005933 break; 005934 } 005935 /* Opcode: ResetCount * * * * * 005936 ** 005937 ** The value of the change counter is copied to the database handle 005938 ** change counter (returned by subsequent calls to sqlite3_changes()). 005939 ** Then the VMs internal change counter resets to 0. 005940 ** This is used by trigger programs. 005941 */ 005942 case OP_ResetCount: { 005943 sqlite3VdbeSetChanges(db, p->nChange); 005944 p->nChange = 0; 005945 break; 005946 } 005947 005948 /* Opcode: SorterCompare P1 P2 P3 P4 005949 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 005950 ** 005951 ** P1 is a sorter cursor. This instruction compares a prefix of the 005952 ** record blob in register P3 against a prefix of the entry that 005953 ** the sorter cursor currently points to. Only the first P4 fields 005954 ** of r[P3] and the sorter record are compared. 005955 ** 005956 ** If either P3 or the sorter contains a NULL in one of their significant 005957 ** fields (not counting the P4 fields at the end which are ignored) then 005958 ** the comparison is assumed to be equal. 005959 ** 005960 ** Fall through to next instruction if the two records compare equal to 005961 ** each other. Jump to P2 if they are different. 005962 */ 005963 case OP_SorterCompare: { 005964 VdbeCursor *pC; 005965 int res; 005966 int nKeyCol; 005967 005968 pC = p->apCsr[pOp->p1]; 005969 assert( isSorter(pC) ); 005970 assert( pOp->p4type==P4_INT32 ); 005971 pIn3 = &aMem[pOp->p3]; 005972 nKeyCol = pOp->p4.i; 005973 res = 0; 005974 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 005975 VdbeBranchTaken(res!=0,2); 005976 if( rc ) goto abort_due_to_error; 005977 if( res ) goto jump_to_p2; 005978 break; 005979 }; 005980 005981 /* Opcode: SorterData P1 P2 P3 * * 005982 ** Synopsis: r[P2]=data 005983 ** 005984 ** Write into register P2 the current sorter data for sorter cursor P1. 005985 ** Then clear the column header cache on cursor P3. 005986 ** 005987 ** This opcode is normally used to move a record out of the sorter and into 005988 ** a register that is the source for a pseudo-table cursor created using 005989 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 005990 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 005991 ** us from having to issue a separate NullRow instruction to clear that cache. 005992 */ 005993 case OP_SorterData: { /* ncycle */ 005994 VdbeCursor *pC; 005995 005996 pOut = &aMem[pOp->p2]; 005997 pC = p->apCsr[pOp->p1]; 005998 assert( isSorter(pC) ); 005999 rc = sqlite3VdbeSorterRowkey(pC, pOut); 006000 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 006001 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006002 if( rc ) goto abort_due_to_error; 006003 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 006004 break; 006005 } 006006 006007 /* Opcode: RowData P1 P2 P3 * * 006008 ** Synopsis: r[P2]=data 006009 ** 006010 ** Write into register P2 the complete row content for the row at 006011 ** which cursor P1 is currently pointing. 006012 ** There is no interpretation of the data. 006013 ** It is just copied onto the P2 register exactly as 006014 ** it is found in the database file. 006015 ** 006016 ** If cursor P1 is an index, then the content is the key of the row. 006017 ** If cursor P2 is a table, then the content extracted is the data. 006018 ** 006019 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 006020 ** of a real table, not a pseudo-table. 006021 ** 006022 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 006023 ** into the database page. That means that the content of the output 006024 ** register will be invalidated as soon as the cursor moves - including 006025 ** moves caused by other cursors that "save" the current cursors 006026 ** position in order that they can write to the same table. If P3==0 006027 ** then a copy of the data is made into memory. P3!=0 is faster, but 006028 ** P3==0 is safer. 006029 ** 006030 ** If P3!=0 then the content of the P2 register is unsuitable for use 006031 ** in OP_Result and any OP_Result will invalidate the P2 register content. 006032 ** The P2 register content is invalidated by opcodes like OP_Function or 006033 ** by any use of another cursor pointing to the same table. 006034 */ 006035 case OP_RowData: { 006036 VdbeCursor *pC; 006037 BtCursor *pCrsr; 006038 u32 n; 006039 006040 pOut = out2Prerelease(p, pOp); 006041 006042 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006043 pC = p->apCsr[pOp->p1]; 006044 assert( pC!=0 ); 006045 assert( pC->eCurType==CURTYPE_BTREE ); 006046 assert( isSorter(pC)==0 ); 006047 assert( pC->nullRow==0 ); 006048 assert( pC->uc.pCursor!=0 ); 006049 pCrsr = pC->uc.pCursor; 006050 006051 /* The OP_RowData opcodes always follow OP_NotExists or 006052 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 006053 ** that might invalidate the cursor. 006054 ** If this where not the case, on of the following assert()s 006055 ** would fail. Should this ever change (because of changes in the code 006056 ** generator) then the fix would be to insert a call to 006057 ** sqlite3VdbeCursorMoveto(). 006058 */ 006059 assert( pC->deferredMoveto==0 ); 006060 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 006061 006062 n = sqlite3BtreePayloadSize(pCrsr); 006063 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 006064 goto too_big; 006065 } 006066 testcase( n==0 ); 006067 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 006068 if( rc ) goto abort_due_to_error; 006069 if( !pOp->p3 ) Deephemeralize(pOut); 006070 UPDATE_MAX_BLOBSIZE(pOut); 006071 REGISTER_TRACE(pOp->p2, pOut); 006072 break; 006073 } 006074 006075 /* Opcode: Rowid P1 P2 * * * 006076 ** Synopsis: r[P2]=PX rowid of P1 006077 ** 006078 ** Store in register P2 an integer which is the key of the table entry that 006079 ** P1 is currently point to. 006080 ** 006081 ** P1 can be either an ordinary table or a virtual table. There used to 006082 ** be a separate OP_VRowid opcode for use with virtual tables, but this 006083 ** one opcode now works for both table types. 006084 */ 006085 case OP_Rowid: { /* out2, ncycle */ 006086 VdbeCursor *pC; 006087 i64 v; 006088 sqlite3_vtab *pVtab; 006089 const sqlite3_module *pModule; 006090 006091 pOut = out2Prerelease(p, pOp); 006092 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006093 pC = p->apCsr[pOp->p1]; 006094 assert( pC!=0 ); 006095 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 006096 if( pC->nullRow ){ 006097 pOut->flags = MEM_Null; 006098 break; 006099 }else if( pC->deferredMoveto ){ 006100 v = pC->movetoTarget; 006101 #ifndef SQLITE_OMIT_VIRTUALTABLE 006102 }else if( pC->eCurType==CURTYPE_VTAB ){ 006103 assert( pC->uc.pVCur!=0 ); 006104 pVtab = pC->uc.pVCur->pVtab; 006105 pModule = pVtab->pModule; 006106 assert( pModule->xRowid ); 006107 rc = pModule->xRowid(pC->uc.pVCur, &v); 006108 sqlite3VtabImportErrmsg(p, pVtab); 006109 if( rc ) goto abort_due_to_error; 006110 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 006111 }else{ 006112 assert( pC->eCurType==CURTYPE_BTREE ); 006113 assert( pC->uc.pCursor!=0 ); 006114 rc = sqlite3VdbeCursorRestore(pC); 006115 if( rc ) goto abort_due_to_error; 006116 if( pC->nullRow ){ 006117 pOut->flags = MEM_Null; 006118 break; 006119 } 006120 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 006121 } 006122 pOut->u.i = v; 006123 break; 006124 } 006125 006126 /* Opcode: NullRow P1 * * * * 006127 ** 006128 ** Move the cursor P1 to a null row. Any OP_Column operations 006129 ** that occur while the cursor is on the null row will always 006130 ** write a NULL. 006131 ** 006132 ** If cursor P1 is not previously opened, open it now to a special 006133 ** pseudo-cursor that always returns NULL for every column. 006134 */ 006135 case OP_NullRow: { 006136 VdbeCursor *pC; 006137 006138 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006139 pC = p->apCsr[pOp->p1]; 006140 if( pC==0 ){ 006141 /* If the cursor is not already open, create a special kind of 006142 ** pseudo-cursor that always gives null rows. */ 006143 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 006144 if( pC==0 ) goto no_mem; 006145 pC->seekResult = 0; 006146 pC->isTable = 1; 006147 pC->noReuse = 1; 006148 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 006149 } 006150 pC->nullRow = 1; 006151 pC->cacheStatus = CACHE_STALE; 006152 if( pC->eCurType==CURTYPE_BTREE ){ 006153 assert( pC->uc.pCursor!=0 ); 006154 sqlite3BtreeClearCursor(pC->uc.pCursor); 006155 } 006156 #ifdef SQLITE_DEBUG 006157 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 006158 #endif 006159 break; 006160 } 006161 006162 /* Opcode: SeekEnd P1 * * * * 006163 ** 006164 ** Position cursor P1 at the end of the btree for the purpose of 006165 ** appending a new entry onto the btree. 006166 ** 006167 ** It is assumed that the cursor is used only for appending and so 006168 ** if the cursor is valid, then the cursor must already be pointing 006169 ** at the end of the btree and so no changes are made to 006170 ** the cursor. 006171 */ 006172 /* Opcode: Last P1 P2 * * * 006173 ** 006174 ** The next use of the Rowid or Column or Prev instruction for P1 006175 ** will refer to the last entry in the database table or index. 006176 ** If the table or index is empty and P2>0, then jump immediately to P2. 006177 ** If P2 is 0 or if the table or index is not empty, fall through 006178 ** to the following instruction. 006179 ** 006180 ** This opcode leaves the cursor configured to move in reverse order, 006181 ** from the end toward the beginning. In other words, the cursor is 006182 ** configured to use Prev, not Next. 006183 */ 006184 case OP_SeekEnd: /* ncycle */ 006185 case OP_Last: { /* jump0, ncycle */ 006186 VdbeCursor *pC; 006187 BtCursor *pCrsr; 006188 int res; 006189 006190 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006191 pC = p->apCsr[pOp->p1]; 006192 assert( pC!=0 ); 006193 assert( pC->eCurType==CURTYPE_BTREE ); 006194 pCrsr = pC->uc.pCursor; 006195 res = 0; 006196 assert( pCrsr!=0 ); 006197 #ifdef SQLITE_DEBUG 006198 pC->seekOp = pOp->opcode; 006199 #endif 006200 if( pOp->opcode==OP_SeekEnd ){ 006201 assert( pOp->p2==0 ); 006202 pC->seekResult = -1; 006203 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 006204 break; 006205 } 006206 } 006207 rc = sqlite3BtreeLast(pCrsr, &res); 006208 pC->nullRow = (u8)res; 006209 pC->deferredMoveto = 0; 006210 pC->cacheStatus = CACHE_STALE; 006211 if( rc ) goto abort_due_to_error; 006212 if( pOp->p2>0 ){ 006213 VdbeBranchTaken(res!=0,2); 006214 if( res ) goto jump_to_p2; 006215 } 006216 break; 006217 } 006218 006219 /* Opcode: IfSizeBetween P1 P2 P3 P4 * 006220 ** 006221 ** Let N be the approximate number of rows in the table or index 006222 ** with cursor P1 and let X be 10*log2(N) if N is positive or -1 006223 ** if N is zero. 006224 ** 006225 ** Jump to P2 if X is in between P3 and P4, inclusive. 006226 */ 006227 case OP_IfSizeBetween: { /* jump */ 006228 VdbeCursor *pC; 006229 BtCursor *pCrsr; 006230 int res; 006231 i64 sz; 006232 006233 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006234 assert( pOp->p4type==P4_INT32 ); 006235 assert( pOp->p3>=-1 && pOp->p3<=640*2 ); 006236 assert( pOp->p4.i>=-1 && pOp->p4.i<=640*2 ); 006237 pC = p->apCsr[pOp->p1]; 006238 assert( pC!=0 ); 006239 pCrsr = pC->uc.pCursor; 006240 assert( pCrsr ); 006241 rc = sqlite3BtreeFirst(pCrsr, &res); 006242 if( rc ) goto abort_due_to_error; 006243 if( res!=0 ){ 006244 sz = -1; /* -Infinity encoding */ 006245 }else{ 006246 sz = sqlite3BtreeRowCountEst(pCrsr); 006247 assert( sz>0 ); 006248 sz = sqlite3LogEst((u64)sz); 006249 } 006250 res = sz>=pOp->p3 && sz<=pOp->p4.i; 006251 VdbeBranchTaken(res!=0,2); 006252 if( res ) goto jump_to_p2; 006253 break; 006254 } 006255 006256 006257 /* Opcode: SorterSort P1 P2 * * * 006258 ** 006259 ** After all records have been inserted into the Sorter object 006260 ** identified by P1, invoke this opcode to actually do the sorting. 006261 ** Jump to P2 if there are no records to be sorted. 006262 ** 006263 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 006264 ** for Sorter objects. 006265 */ 006266 /* Opcode: Sort P1 P2 * * * 006267 ** 006268 ** This opcode does exactly the same thing as OP_Rewind except that 006269 ** it increments an undocumented global variable used for testing. 006270 ** 006271 ** Sorting is accomplished by writing records into a sorting index, 006272 ** then rewinding that index and playing it back from beginning to 006273 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 006274 ** rewinding so that the global variable will be incremented and 006275 ** regression tests can determine whether or not the optimizer is 006276 ** correctly optimizing out sorts. 006277 */ 006278 case OP_SorterSort: /* jump ncycle */ 006279 case OP_Sort: { /* jump ncycle */ 006280 #ifdef SQLITE_TEST 006281 sqlite3_sort_count++; 006282 sqlite3_search_count--; 006283 #endif 006284 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 006285 /* Fall through into OP_Rewind */ 006286 /* no break */ deliberate_fall_through 006287 } 006288 /* Opcode: Rewind P1 P2 * * * 006289 ** 006290 ** The next use of the Rowid or Column or Next instruction for P1 006291 ** will refer to the first entry in the database table or index. 006292 ** If the table or index is empty, jump immediately to P2. 006293 ** If the table or index is not empty, fall through to the following 006294 ** instruction. 006295 ** 006296 ** If P2 is zero, that is an assertion that the P1 table is never 006297 ** empty and hence the jump will never be taken. 006298 ** 006299 ** This opcode leaves the cursor configured to move in forward order, 006300 ** from the beginning toward the end. In other words, the cursor is 006301 ** configured to use Next, not Prev. 006302 */ 006303 case OP_Rewind: { /* jump0, ncycle */ 006304 VdbeCursor *pC; 006305 BtCursor *pCrsr; 006306 int res; 006307 006308 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006309 assert( pOp->p5==0 ); 006310 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 006311 006312 pC = p->apCsr[pOp->p1]; 006313 assert( pC!=0 ); 006314 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 006315 res = 1; 006316 #ifdef SQLITE_DEBUG 006317 pC->seekOp = OP_Rewind; 006318 #endif 006319 if( isSorter(pC) ){ 006320 rc = sqlite3VdbeSorterRewind(pC, &res); 006321 }else{ 006322 assert( pC->eCurType==CURTYPE_BTREE ); 006323 pCrsr = pC->uc.pCursor; 006324 assert( pCrsr ); 006325 rc = sqlite3BtreeFirst(pCrsr, &res); 006326 pC->deferredMoveto = 0; 006327 pC->cacheStatus = CACHE_STALE; 006328 } 006329 if( rc ) goto abort_due_to_error; 006330 pC->nullRow = (u8)res; 006331 if( pOp->p2>0 ){ 006332 VdbeBranchTaken(res!=0,2); 006333 if( res ) goto jump_to_p2; 006334 } 006335 break; 006336 } 006337 006338 /* Opcode: Next P1 P2 P3 * P5 006339 ** 006340 ** Advance cursor P1 so that it points to the next key/data pair in its 006341 ** table or index. If there are no more key/value pairs then fall through 006342 ** to the following instruction. But if the cursor advance was successful, 006343 ** jump immediately to P2. 006344 ** 006345 ** The Next opcode is only valid following an SeekGT, SeekGE, or 006346 ** OP_Rewind opcode used to position the cursor. Next is not allowed 006347 ** to follow SeekLT, SeekLE, or OP_Last. 006348 ** 006349 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 006350 ** been opened prior to this opcode or the program will segfault. 006351 ** 006352 ** The P3 value is a hint to the btree implementation. If P3==1, that 006353 ** means P1 is an SQL index and that this instruction could have been 006354 ** omitted if that index had been unique. P3 is usually 0. P3 is 006355 ** always either 0 or 1. 006356 ** 006357 ** If P5 is positive and the jump is taken, then event counter 006358 ** number P5-1 in the prepared statement is incremented. 006359 ** 006360 ** See also: Prev 006361 */ 006362 /* Opcode: Prev P1 P2 P3 * P5 006363 ** 006364 ** Back up cursor P1 so that it points to the previous key/data pair in its 006365 ** table or index. If there is no previous key/value pairs then fall through 006366 ** to the following instruction. But if the cursor backup was successful, 006367 ** jump immediately to P2. 006368 ** 006369 ** 006370 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 006371 ** OP_Last opcode used to position the cursor. Prev is not allowed 006372 ** to follow SeekGT, SeekGE, or OP_Rewind. 006373 ** 006374 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 006375 ** not open then the behavior is undefined. 006376 ** 006377 ** The P3 value is a hint to the btree implementation. If P3==1, that 006378 ** means P1 is an SQL index and that this instruction could have been 006379 ** omitted if that index had been unique. P3 is usually 0. P3 is 006380 ** always either 0 or 1. 006381 ** 006382 ** If P5 is positive and the jump is taken, then event counter 006383 ** number P5-1 in the prepared statement is incremented. 006384 */ 006385 /* Opcode: SorterNext P1 P2 * * P5 006386 ** 006387 ** This opcode works just like OP_Next except that P1 must be a 006388 ** sorter object for which the OP_SorterSort opcode has been 006389 ** invoked. This opcode advances the cursor to the next sorted 006390 ** record, or jumps to P2 if there are no more sorted records. 006391 */ 006392 case OP_SorterNext: { /* jump */ 006393 VdbeCursor *pC; 006394 006395 pC = p->apCsr[pOp->p1]; 006396 assert( isSorter(pC) ); 006397 rc = sqlite3VdbeSorterNext(db, pC); 006398 goto next_tail; 006399 006400 case OP_Prev: /* jump, ncycle */ 006401 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006402 assert( pOp->p5==0 006403 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006404 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006405 pC = p->apCsr[pOp->p1]; 006406 assert( pC!=0 ); 006407 assert( pC->deferredMoveto==0 ); 006408 assert( pC->eCurType==CURTYPE_BTREE ); 006409 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 006410 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 006411 || pC->seekOp==OP_NullRow); 006412 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 006413 goto next_tail; 006414 006415 case OP_Next: /* jump, ncycle */ 006416 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006417 assert( pOp->p5==0 006418 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006419 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006420 pC = p->apCsr[pOp->p1]; 006421 assert( pC!=0 ); 006422 assert( pC->deferredMoveto==0 ); 006423 assert( pC->eCurType==CURTYPE_BTREE ); 006424 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 006425 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 006426 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 006427 || pC->seekOp==OP_IfNoHope); 006428 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 006429 006430 next_tail: 006431 pC->cacheStatus = CACHE_STALE; 006432 VdbeBranchTaken(rc==SQLITE_OK,2); 006433 if( rc==SQLITE_OK ){ 006434 pC->nullRow = 0; 006435 p->aCounter[pOp->p5]++; 006436 #ifdef SQLITE_TEST 006437 sqlite3_search_count++; 006438 #endif 006439 goto jump_to_p2_and_check_for_interrupt; 006440 } 006441 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 006442 rc = SQLITE_OK; 006443 pC->nullRow = 1; 006444 goto check_for_interrupt; 006445 } 006446 006447 /* Opcode: IdxInsert P1 P2 P3 P4 P5 006448 ** Synopsis: key=r[P2] 006449 ** 006450 ** Register P2 holds an SQL index key made using the 006451 ** MakeRecord instructions. This opcode writes that key 006452 ** into the index P1. Data for the entry is nil. 006453 ** 006454 ** If P4 is not zero, then it is the number of values in the unpacked 006455 ** key of reg(P2). In that case, P3 is the index of the first register 006456 ** for the unpacked key. The availability of the unpacked key can sometimes 006457 ** be an optimization. 006458 ** 006459 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 006460 ** that this insert is likely to be an append. 006461 ** 006462 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 006463 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 006464 ** then the change counter is unchanged. 006465 ** 006466 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 006467 ** run faster by avoiding an unnecessary seek on cursor P1. However, 006468 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 006469 ** seeks on the cursor or if the most recent seek used a key equivalent 006470 ** to P2. 006471 ** 006472 ** This instruction only works for indices. The equivalent instruction 006473 ** for tables is OP_Insert. 006474 */ 006475 case OP_IdxInsert: { /* in2 */ 006476 VdbeCursor *pC; 006477 BtreePayload x; 006478 006479 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006480 pC = p->apCsr[pOp->p1]; 006481 sqlite3VdbeIncrWriteCounter(p, pC); 006482 assert( pC!=0 ); 006483 assert( !isSorter(pC) ); 006484 pIn2 = &aMem[pOp->p2]; 006485 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 006486 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 006487 assert( pC->eCurType==CURTYPE_BTREE ); 006488 assert( pC->isTable==0 ); 006489 rc = ExpandBlob(pIn2); 006490 if( rc ) goto abort_due_to_error; 006491 x.nKey = pIn2->n; 006492 x.pKey = pIn2->z; 006493 x.aMem = aMem + pOp->p3; 006494 x.nMem = (u16)pOp->p4.i; 006495 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 006496 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 006497 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 006498 ); 006499 assert( pC->deferredMoveto==0 ); 006500 pC->cacheStatus = CACHE_STALE; 006501 if( rc) goto abort_due_to_error; 006502 break; 006503 } 006504 006505 /* Opcode: SorterInsert P1 P2 * * * 006506 ** Synopsis: key=r[P2] 006507 ** 006508 ** Register P2 holds an SQL index key made using the 006509 ** MakeRecord instructions. This opcode writes that key 006510 ** into the sorter P1. Data for the entry is nil. 006511 */ 006512 case OP_SorterInsert: { /* in2 */ 006513 VdbeCursor *pC; 006514 006515 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006516 pC = p->apCsr[pOp->p1]; 006517 sqlite3VdbeIncrWriteCounter(p, pC); 006518 assert( pC!=0 ); 006519 assert( isSorter(pC) ); 006520 pIn2 = &aMem[pOp->p2]; 006521 assert( pIn2->flags & MEM_Blob ); 006522 assert( pC->isTable==0 ); 006523 rc = ExpandBlob(pIn2); 006524 if( rc ) goto abort_due_to_error; 006525 rc = sqlite3VdbeSorterWrite(pC, pIn2); 006526 if( rc) goto abort_due_to_error; 006527 break; 006528 } 006529 006530 /* Opcode: IdxDelete P1 P2 P3 * P5 006531 ** Synopsis: key=r[P2@P3] 006532 ** 006533 ** The content of P3 registers starting at register P2 form 006534 ** an unpacked index key. This opcode removes that entry from the 006535 ** index opened by cursor P1. 006536 ** 006537 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 006538 ** if no matching index entry is found. This happens when running 006539 ** an UPDATE or DELETE statement and the index entry to be updated 006540 ** or deleted is not found. For some uses of IdxDelete 006541 ** (example: the EXCEPT operator) it does not matter that no matching 006542 ** entry is found. For those cases, P5 is zero. Also, do not raise 006543 ** this (self-correcting and non-critical) error if in writable_schema mode. 006544 */ 006545 case OP_IdxDelete: { 006546 VdbeCursor *pC; 006547 BtCursor *pCrsr; 006548 int res; 006549 UnpackedRecord r; 006550 006551 assert( pOp->p3>0 ); 006552 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 006553 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006554 pC = p->apCsr[pOp->p1]; 006555 assert( pC!=0 ); 006556 assert( pC->eCurType==CURTYPE_BTREE ); 006557 sqlite3VdbeIncrWriteCounter(p, pC); 006558 pCrsr = pC->uc.pCursor; 006559 assert( pCrsr!=0 ); 006560 r.pKeyInfo = pC->pKeyInfo; 006561 r.nField = (u16)pOp->p3; 006562 r.default_rc = 0; 006563 r.aMem = &aMem[pOp->p2]; 006564 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 006565 if( rc ) goto abort_due_to_error; 006566 if( res==0 ){ 006567 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 006568 if( rc ) goto abort_due_to_error; 006569 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 006570 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 006571 goto abort_due_to_error; 006572 } 006573 assert( pC->deferredMoveto==0 ); 006574 pC->cacheStatus = CACHE_STALE; 006575 pC->seekResult = 0; 006576 break; 006577 } 006578 006579 /* Opcode: DeferredSeek P1 * P3 P4 * 006580 ** Synopsis: Move P3 to P1.rowid if needed 006581 ** 006582 ** P1 is an open index cursor and P3 is a cursor on the corresponding 006583 ** table. This opcode does a deferred seek of the P3 table cursor 006584 ** to the row that corresponds to the current row of P1. 006585 ** 006586 ** This is a deferred seek. Nothing actually happens until 006587 ** the cursor is used to read a record. That way, if no reads 006588 ** occur, no unnecessary I/O happens. 006589 ** 006590 ** P4 may be an array of integers (type P4_INTARRAY) containing 006591 ** one entry for each column in the P3 table. If array entry a(i) 006592 ** is non-zero, then reading column a(i)-1 from cursor P3 is 006593 ** equivalent to performing the deferred seek and then reading column i 006594 ** from P1. This information is stored in P3 and used to redirect 006595 ** reads against P3 over to P1, thus possibly avoiding the need to 006596 ** seek and read cursor P3. 006597 */ 006598 /* Opcode: IdxRowid P1 P2 * * * 006599 ** Synopsis: r[P2]=rowid 006600 ** 006601 ** Write into register P2 an integer which is the last entry in the record at 006602 ** the end of the index key pointed to by cursor P1. This integer should be 006603 ** the rowid of the table entry to which this index entry points. 006604 ** 006605 ** See also: Rowid, MakeRecord. 006606 */ 006607 case OP_DeferredSeek: /* ncycle */ 006608 case OP_IdxRowid: { /* out2, ncycle */ 006609 VdbeCursor *pC; /* The P1 index cursor */ 006610 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 006611 i64 rowid; /* Rowid that P1 current points to */ 006612 006613 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006614 pC = p->apCsr[pOp->p1]; 006615 assert( pC!=0 ); 006616 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 006617 assert( pC->uc.pCursor!=0 ); 006618 assert( pC->isTable==0 || IsNullCursor(pC) ); 006619 assert( pC->deferredMoveto==0 ); 006620 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 006621 006622 /* The IdxRowid and Seek opcodes are combined because of the commonality 006623 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 006624 rc = sqlite3VdbeCursorRestore(pC); 006625 006626 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed 006627 ** since it was last positioned and an error (e.g. OOM or an IO error) 006628 ** occurs while trying to reposition it. */ 006629 if( rc!=SQLITE_OK ) goto abort_due_to_error; 006630 006631 if( !pC->nullRow ){ 006632 rowid = 0; /* Not needed. Only used to silence a warning. */ 006633 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 006634 if( rc!=SQLITE_OK ){ 006635 goto abort_due_to_error; 006636 } 006637 if( pOp->opcode==OP_DeferredSeek ){ 006638 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 006639 pTabCur = p->apCsr[pOp->p3]; 006640 assert( pTabCur!=0 ); 006641 assert( pTabCur->eCurType==CURTYPE_BTREE ); 006642 assert( pTabCur->uc.pCursor!=0 ); 006643 assert( pTabCur->isTable ); 006644 pTabCur->nullRow = 0; 006645 pTabCur->movetoTarget = rowid; 006646 pTabCur->deferredMoveto = 1; 006647 pTabCur->cacheStatus = CACHE_STALE; 006648 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 006649 assert( !pTabCur->isEphemeral ); 006650 pTabCur->ub.aAltMap = pOp->p4.ai; 006651 assert( !pC->isEphemeral ); 006652 pTabCur->pAltCursor = pC; 006653 }else{ 006654 pOut = out2Prerelease(p, pOp); 006655 pOut->u.i = rowid; 006656 } 006657 }else{ 006658 assert( pOp->opcode==OP_IdxRowid ); 006659 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 006660 } 006661 break; 006662 } 006663 006664 /* Opcode: FinishSeek P1 * * * * 006665 ** 006666 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 006667 ** seek operation now, without further delay. If the cursor seek has 006668 ** already occurred, this instruction is a no-op. 006669 */ 006670 case OP_FinishSeek: { /* ncycle */ 006671 VdbeCursor *pC; /* The P1 index cursor */ 006672 006673 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006674 pC = p->apCsr[pOp->p1]; 006675 if( pC->deferredMoveto ){ 006676 rc = sqlite3VdbeFinishMoveto(pC); 006677 if( rc ) goto abort_due_to_error; 006678 } 006679 break; 006680 } 006681 006682 /* Opcode: IdxGE P1 P2 P3 P4 * 006683 ** Synopsis: key=r[P3@P4] 006684 ** 006685 ** The P4 register values beginning with P3 form an unpacked index 006686 ** key that omits the PRIMARY KEY. Compare this key value against the index 006687 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006688 ** fields at the end. 006689 ** 006690 ** If the P1 index entry is greater than or equal to the key value 006691 ** then jump to P2. Otherwise fall through to the next instruction. 006692 */ 006693 /* Opcode: IdxGT P1 P2 P3 P4 * 006694 ** Synopsis: key=r[P3@P4] 006695 ** 006696 ** The P4 register values beginning with P3 form an unpacked index 006697 ** key that omits the PRIMARY KEY. Compare this key value against the index 006698 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006699 ** fields at the end. 006700 ** 006701 ** If the P1 index entry is greater than the key value 006702 ** then jump to P2. Otherwise fall through to the next instruction. 006703 */ 006704 /* Opcode: IdxLT P1 P2 P3 P4 * 006705 ** Synopsis: key=r[P3@P4] 006706 ** 006707 ** The P4 register values beginning with P3 form an unpacked index 006708 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006709 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006710 ** ROWID on the P1 index. 006711 ** 006712 ** If the P1 index entry is less than the key value then jump to P2. 006713 ** Otherwise fall through to the next instruction. 006714 */ 006715 /* Opcode: IdxLE P1 P2 P3 P4 * 006716 ** Synopsis: key=r[P3@P4] 006717 ** 006718 ** The P4 register values beginning with P3 form an unpacked index 006719 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006720 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006721 ** ROWID on the P1 index. 006722 ** 006723 ** If the P1 index entry is less than or equal to the key value then jump 006724 ** to P2. Otherwise fall through to the next instruction. 006725 */ 006726 case OP_IdxLE: /* jump, ncycle */ 006727 case OP_IdxGT: /* jump, ncycle */ 006728 case OP_IdxLT: /* jump, ncycle */ 006729 case OP_IdxGE: { /* jump, ncycle */ 006730 VdbeCursor *pC; 006731 int res; 006732 UnpackedRecord r; 006733 006734 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006735 pC = p->apCsr[pOp->p1]; 006736 assert( pC!=0 ); 006737 assert( pC->isOrdered ); 006738 assert( pC->eCurType==CURTYPE_BTREE ); 006739 assert( pC->uc.pCursor!=0); 006740 assert( pC->deferredMoveto==0 ); 006741 assert( pOp->p4type==P4_INT32 ); 006742 r.pKeyInfo = pC->pKeyInfo; 006743 r.nField = (u16)pOp->p4.i; 006744 if( pOp->opcode<OP_IdxLT ){ 006745 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 006746 r.default_rc = -1; 006747 }else{ 006748 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 006749 r.default_rc = 0; 006750 } 006751 r.aMem = &aMem[pOp->p3]; 006752 #ifdef SQLITE_DEBUG 006753 { 006754 int i; 006755 for(i=0; i<r.nField; i++){ 006756 assert( memIsValid(&r.aMem[i]) ); 006757 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 006758 } 006759 } 006760 #endif 006761 006762 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 006763 { 006764 i64 nCellKey = 0; 006765 BtCursor *pCur; 006766 Mem m; 006767 006768 assert( pC->eCurType==CURTYPE_BTREE ); 006769 pCur = pC->uc.pCursor; 006770 assert( sqlite3BtreeCursorIsValid(pCur) ); 006771 nCellKey = sqlite3BtreePayloadSize(pCur); 006772 /* nCellKey will always be between 0 and 0xffffffff because of the way 006773 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 006774 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 006775 rc = SQLITE_CORRUPT_BKPT; 006776 goto abort_due_to_error; 006777 } 006778 sqlite3VdbeMemInit(&m, db, 0); 006779 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 006780 if( rc ) goto abort_due_to_error; 006781 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 006782 sqlite3VdbeMemReleaseMalloc(&m); 006783 } 006784 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 006785 006786 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 006787 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 006788 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 006789 res = -res; 006790 }else{ 006791 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 006792 res++; 006793 } 006794 VdbeBranchTaken(res>0,2); 006795 assert( rc==SQLITE_OK ); 006796 if( res>0 ) goto jump_to_p2; 006797 break; 006798 } 006799 006800 /* Opcode: Destroy P1 P2 P3 * * 006801 ** 006802 ** Delete an entire database table or index whose root page in the database 006803 ** file is given by P1. 006804 ** 006805 ** The table being destroyed is in the main database file if P3==0. If 006806 ** P3==1 then the table to be destroyed is in the auxiliary database file 006807 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006808 ** 006809 ** If AUTOVACUUM is enabled then it is possible that another root page 006810 ** might be moved into the newly deleted root page in order to keep all 006811 ** root pages contiguous at the beginning of the database. The former 006812 ** value of the root page that moved - its value before the move occurred - 006813 ** is stored in register P2. If no page movement was required (because the 006814 ** table being dropped was already the last one in the database) then a 006815 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 006816 ** is stored in register P2. 006817 ** 006818 ** This opcode throws an error if there are any active reader VMs when 006819 ** it is invoked. This is done to avoid the difficulty associated with 006820 ** updating existing cursors when a root page is moved in an AUTOVACUUM 006821 ** database. This error is thrown even if the database is not an AUTOVACUUM 006822 ** db in order to avoid introducing an incompatibility between autovacuum 006823 ** and non-autovacuum modes. 006824 ** 006825 ** See also: Clear 006826 */ 006827 case OP_Destroy: { /* out2 */ 006828 int iMoved; 006829 int iDb; 006830 006831 sqlite3VdbeIncrWriteCounter(p, 0); 006832 assert( p->readOnly==0 ); 006833 assert( pOp->p1>1 ); 006834 pOut = out2Prerelease(p, pOp); 006835 pOut->flags = MEM_Null; 006836 if( db->nVdbeRead > db->nVDestroy+1 ){ 006837 rc = SQLITE_LOCKED; 006838 p->errorAction = OE_Abort; 006839 goto abort_due_to_error; 006840 }else{ 006841 iDb = pOp->p3; 006842 assert( DbMaskTest(p->btreeMask, iDb) ); 006843 iMoved = 0; /* Not needed. Only to silence a warning. */ 006844 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 006845 pOut->flags = MEM_Int; 006846 pOut->u.i = iMoved; 006847 if( rc ) goto abort_due_to_error; 006848 #ifndef SQLITE_OMIT_AUTOVACUUM 006849 if( iMoved!=0 ){ 006850 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 006851 /* All OP_Destroy operations occur on the same btree */ 006852 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 006853 resetSchemaOnFault = iDb+1; 006854 } 006855 #endif 006856 } 006857 break; 006858 } 006859 006860 /* Opcode: Clear P1 P2 P3 006861 ** 006862 ** Delete all contents of the database table or index whose root page 006863 ** in the database file is given by P1. But, unlike Destroy, do not 006864 ** remove the table or index from the database file. 006865 ** 006866 ** The table being cleared is in the main database file if P2==0. If 006867 ** P2==1 then the table to be cleared is in the auxiliary database file 006868 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006869 ** 006870 ** If the P3 value is non-zero, then the row change count is incremented 006871 ** by the number of rows in the table being cleared. If P3 is greater 006872 ** than zero, then the value stored in register P3 is also incremented 006873 ** by the number of rows in the table being cleared. 006874 ** 006875 ** See also: Destroy 006876 */ 006877 case OP_Clear: { 006878 i64 nChange; 006879 006880 sqlite3VdbeIncrWriteCounter(p, 0); 006881 nChange = 0; 006882 assert( p->readOnly==0 ); 006883 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 006884 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 006885 if( pOp->p3 ){ 006886 p->nChange += nChange; 006887 if( pOp->p3>0 ){ 006888 assert( memIsValid(&aMem[pOp->p3]) ); 006889 memAboutToChange(p, &aMem[pOp->p3]); 006890 aMem[pOp->p3].u.i += nChange; 006891 } 006892 } 006893 if( rc ) goto abort_due_to_error; 006894 break; 006895 } 006896 006897 /* Opcode: ResetSorter P1 * * * * 006898 ** 006899 ** Delete all contents from the ephemeral table or sorter 006900 ** that is open on cursor P1. 006901 ** 006902 ** This opcode only works for cursors used for sorting and 006903 ** opened with OP_OpenEphemeral or OP_SorterOpen. 006904 */ 006905 case OP_ResetSorter: { 006906 VdbeCursor *pC; 006907 006908 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006909 pC = p->apCsr[pOp->p1]; 006910 assert( pC!=0 ); 006911 if( isSorter(pC) ){ 006912 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 006913 }else{ 006914 assert( pC->eCurType==CURTYPE_BTREE ); 006915 assert( pC->isEphemeral ); 006916 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 006917 if( rc ) goto abort_due_to_error; 006918 } 006919 break; 006920 } 006921 006922 /* Opcode: CreateBtree P1 P2 P3 * * 006923 ** Synopsis: r[P2]=root iDb=P1 flags=P3 006924 ** 006925 ** Allocate a new b-tree in the main database file if P1==0 or in the 006926 ** TEMP database file if P1==1 or in an attached database if 006927 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 006928 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 006929 ** The root page number of the new b-tree is stored in register P2. 006930 */ 006931 case OP_CreateBtree: { /* out2 */ 006932 Pgno pgno; 006933 Db *pDb; 006934 006935 sqlite3VdbeIncrWriteCounter(p, 0); 006936 pOut = out2Prerelease(p, pOp); 006937 pgno = 0; 006938 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 006939 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 006940 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 006941 assert( p->readOnly==0 ); 006942 pDb = &db->aDb[pOp->p1]; 006943 assert( pDb->pBt!=0 ); 006944 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 006945 if( rc ) goto abort_due_to_error; 006946 pOut->u.i = pgno; 006947 break; 006948 } 006949 006950 /* Opcode: SqlExec P1 P2 * P4 * 006951 ** 006952 ** Run the SQL statement or statements specified in the P4 string. 006953 ** 006954 ** The P1 parameter is a bitmask of options: 006955 ** 006956 ** 0x0001 Disable Auth and Trace callbacks while the statements 006957 ** in P4 are running. 006958 ** 006959 ** 0x0002 Set db->nAnalysisLimit to P2 while the statements in 006960 ** P4 are running. 006961 ** 006962 */ 006963 case OP_SqlExec: { 006964 char *zErr; 006965 #ifndef SQLITE_OMIT_AUTHORIZATION 006966 sqlite3_xauth xAuth; 006967 #endif 006968 u8 mTrace; 006969 int savedAnalysisLimit; 006970 006971 sqlite3VdbeIncrWriteCounter(p, 0); 006972 db->nSqlExec++; 006973 zErr = 0; 006974 #ifndef SQLITE_OMIT_AUTHORIZATION 006975 xAuth = db->xAuth; 006976 #endif 006977 mTrace = db->mTrace; 006978 savedAnalysisLimit = db->nAnalysisLimit; 006979 if( pOp->p1 & 0x0001 ){ 006980 #ifndef SQLITE_OMIT_AUTHORIZATION 006981 db->xAuth = 0; 006982 #endif 006983 db->mTrace = 0; 006984 } 006985 if( pOp->p1 & 0x0002 ){ 006986 db->nAnalysisLimit = pOp->p2; 006987 } 006988 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr); 006989 db->nSqlExec--; 006990 #ifndef SQLITE_OMIT_AUTHORIZATION 006991 db->xAuth = xAuth; 006992 #endif 006993 db->mTrace = mTrace; 006994 db->nAnalysisLimit = savedAnalysisLimit; 006995 if( zErr || rc ){ 006996 sqlite3VdbeError(p, "%s", zErr); 006997 sqlite3_free(zErr); 006998 if( rc==SQLITE_NOMEM ) goto no_mem; 006999 goto abort_due_to_error; 007000 } 007001 break; 007002 } 007003 007004 /* Opcode: ParseSchema P1 * * P4 * 007005 ** 007006 ** Read and parse all entries from the schema table of database P1 007007 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 007008 ** entire schema for P1 is reparsed. 007009 ** 007010 ** This opcode invokes the parser to create a new virtual machine, 007011 ** then runs the new virtual machine. It is thus a re-entrant opcode. 007012 */ 007013 case OP_ParseSchema: { 007014 int iDb; 007015 const char *zSchema; 007016 char *zSql; 007017 InitData initData; 007018 007019 /* Any prepared statement that invokes this opcode will hold mutexes 007020 ** on every btree. This is a prerequisite for invoking 007021 ** sqlite3InitCallback(). 007022 */ 007023 #ifdef SQLITE_DEBUG 007024 for(iDb=0; iDb<db->nDb; iDb++){ 007025 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 007026 } 007027 #endif 007028 007029 iDb = pOp->p1; 007030 assert( iDb>=0 && iDb<db->nDb ); 007031 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 007032 || db->mallocFailed 007033 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 007034 007035 #ifndef SQLITE_OMIT_ALTERTABLE 007036 if( pOp->p4.z==0 ){ 007037 sqlite3SchemaClear(db->aDb[iDb].pSchema); 007038 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 007039 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 007040 db->mDbFlags |= DBFLAG_SchemaChange; 007041 p->expired = 0; 007042 }else 007043 #endif 007044 { 007045 zSchema = LEGACY_SCHEMA_TABLE; 007046 initData.db = db; 007047 initData.iDb = iDb; 007048 initData.pzErrMsg = &p->zErrMsg; 007049 initData.mInitFlags = 0; 007050 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 007051 zSql = sqlite3MPrintf(db, 007052 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 007053 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 007054 if( zSql==0 ){ 007055 rc = SQLITE_NOMEM_BKPT; 007056 }else{ 007057 assert( db->init.busy==0 ); 007058 db->init.busy = 1; 007059 initData.rc = SQLITE_OK; 007060 initData.nInitRow = 0; 007061 assert( !db->mallocFailed ); 007062 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 007063 if( rc==SQLITE_OK ) rc = initData.rc; 007064 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 007065 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 007066 ** at least one SQL statement. Any less than that indicates that 007067 ** the sqlite_schema table is corrupt. */ 007068 rc = SQLITE_CORRUPT_BKPT; 007069 } 007070 sqlite3DbFreeNN(db, zSql); 007071 db->init.busy = 0; 007072 } 007073 } 007074 if( rc ){ 007075 sqlite3ResetAllSchemasOfConnection(db); 007076 if( rc==SQLITE_NOMEM ){ 007077 goto no_mem; 007078 } 007079 goto abort_due_to_error; 007080 } 007081 break; 007082 } 007083 007084 #if !defined(SQLITE_OMIT_ANALYZE) 007085 /* Opcode: LoadAnalysis P1 * * * * 007086 ** 007087 ** Read the sqlite_stat1 table for database P1 and load the content 007088 ** of that table into the internal index hash table. This will cause 007089 ** the analysis to be used when preparing all subsequent queries. 007090 */ 007091 case OP_LoadAnalysis: { 007092 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007093 rc = sqlite3AnalysisLoad(db, pOp->p1); 007094 if( rc ) goto abort_due_to_error; 007095 break; 007096 } 007097 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 007098 007099 /* Opcode: DropTable P1 * * P4 * 007100 ** 007101 ** Remove the internal (in-memory) data structures that describe 007102 ** the table named P4 in database P1. This is called after a table 007103 ** is dropped from disk (using the Destroy opcode) in order to keep 007104 ** the internal representation of the 007105 ** schema consistent with what is on disk. 007106 */ 007107 case OP_DropTable: { 007108 sqlite3VdbeIncrWriteCounter(p, 0); 007109 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 007110 break; 007111 } 007112 007113 /* Opcode: DropIndex P1 * * P4 * 007114 ** 007115 ** Remove the internal (in-memory) data structures that describe 007116 ** the index named P4 in database P1. This is called after an index 007117 ** is dropped from disk (using the Destroy opcode) 007118 ** in order to keep the internal representation of the 007119 ** schema consistent with what is on disk. 007120 */ 007121 case OP_DropIndex: { 007122 sqlite3VdbeIncrWriteCounter(p, 0); 007123 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 007124 break; 007125 } 007126 007127 /* Opcode: DropTrigger P1 * * P4 * 007128 ** 007129 ** Remove the internal (in-memory) data structures that describe 007130 ** the trigger named P4 in database P1. This is called after a trigger 007131 ** is dropped from disk (using the Destroy opcode) in order to keep 007132 ** the internal representation of the 007133 ** schema consistent with what is on disk. 007134 */ 007135 case OP_DropTrigger: { 007136 sqlite3VdbeIncrWriteCounter(p, 0); 007137 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 007138 break; 007139 } 007140 007141 007142 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 007143 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 007144 ** 007145 ** Do an analysis of the currently open database. Store in 007146 ** register (P1+1) the text of an error message describing any problems. 007147 ** If no problems are found, store a NULL in register (P1+1). 007148 ** 007149 ** The register (P1) contains one less than the maximum number of allowed 007150 ** errors. At most reg(P1) errors will be reported. 007151 ** In other words, the analysis stops as soon as reg(P1) errors are 007152 ** seen. Reg(P1) is updated with the number of errors remaining. 007153 ** 007154 ** The root page numbers of all tables in the database are integers 007155 ** stored in P4_INTARRAY argument. 007156 ** 007157 ** If P5 is not zero, the check is done on the auxiliary database 007158 ** file, not the main database file. 007159 ** 007160 ** This opcode is used to implement the integrity_check pragma. 007161 */ 007162 case OP_IntegrityCk: { 007163 int nRoot; /* Number of tables to check. (Number of root pages.) */ 007164 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 007165 int nErr; /* Number of errors reported */ 007166 char *z; /* Text of the error report */ 007167 Mem *pnErr; /* Register keeping track of errors remaining */ 007168 007169 assert( p->bIsReader ); 007170 assert( pOp->p4type==P4_INTARRAY ); 007171 nRoot = pOp->p2; 007172 aRoot = pOp->p4.ai; 007173 assert( nRoot>0 ); 007174 assert( aRoot!=0 ); 007175 assert( aRoot[0]==(Pgno)nRoot ); 007176 assert( pOp->p1>0 && (pOp->p1+1)<=(p->nMem+1 - p->nCursor) ); 007177 pnErr = &aMem[pOp->p1]; 007178 assert( (pnErr->flags & MEM_Int)!=0 ); 007179 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 007180 pIn1 = &aMem[pOp->p1+1]; 007181 assert( pOp->p5<db->nDb ); 007182 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 007183 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], 007184 &aMem[pOp->p3], nRoot, (int)pnErr->u.i+1, &nErr, &z); 007185 sqlite3VdbeMemSetNull(pIn1); 007186 if( nErr==0 ){ 007187 assert( z==0 ); 007188 }else if( rc ){ 007189 sqlite3_free(z); 007190 goto abort_due_to_error; 007191 }else{ 007192 pnErr->u.i -= nErr-1; 007193 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 007194 } 007195 UPDATE_MAX_BLOBSIZE(pIn1); 007196 sqlite3VdbeChangeEncoding(pIn1, encoding); 007197 goto check_for_interrupt; 007198 } 007199 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 007200 007201 /* Opcode: RowSetAdd P1 P2 * * * 007202 ** Synopsis: rowset(P1)=r[P2] 007203 ** 007204 ** Insert the integer value held by register P2 into a RowSet object 007205 ** held in register P1. 007206 ** 007207 ** An assertion fails if P2 is not an integer. 007208 */ 007209 case OP_RowSetAdd: { /* in1, in2 */ 007210 pIn1 = &aMem[pOp->p1]; 007211 pIn2 = &aMem[pOp->p2]; 007212 assert( (pIn2->flags & MEM_Int)!=0 ); 007213 if( (pIn1->flags & MEM_Blob)==0 ){ 007214 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007215 } 007216 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007217 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 007218 break; 007219 } 007220 007221 /* Opcode: RowSetRead P1 P2 P3 * * 007222 ** Synopsis: r[P3]=rowset(P1) 007223 ** 007224 ** Extract the smallest value from the RowSet object in P1 007225 ** and put that value into register P3. 007226 ** Or, if RowSet object P1 is initially empty, leave P3 007227 ** unchanged and jump to instruction P2. 007228 */ 007229 case OP_RowSetRead: { /* jump, in1, out3 */ 007230 i64 val; 007231 007232 pIn1 = &aMem[pOp->p1]; 007233 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 007234 if( (pIn1->flags & MEM_Blob)==0 007235 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 007236 ){ 007237 /* The boolean index is empty */ 007238 sqlite3VdbeMemSetNull(pIn1); 007239 VdbeBranchTaken(1,2); 007240 goto jump_to_p2_and_check_for_interrupt; 007241 }else{ 007242 /* A value was pulled from the index */ 007243 VdbeBranchTaken(0,2); 007244 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 007245 } 007246 goto check_for_interrupt; 007247 } 007248 007249 /* Opcode: RowSetTest P1 P2 P3 P4 007250 ** Synopsis: if r[P3] in rowset(P1) goto P2 007251 ** 007252 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 007253 ** contains a RowSet object and that RowSet object contains 007254 ** the value held in P3, jump to register P2. Otherwise, insert the 007255 ** integer in P3 into the RowSet and continue on to the 007256 ** next opcode. 007257 ** 007258 ** The RowSet object is optimized for the case where sets of integers 007259 ** are inserted in distinct phases, which each set contains no duplicates. 007260 ** Each set is identified by a unique P4 value. The first set 007261 ** must have P4==0, the final set must have P4==-1, and for all other sets 007262 ** must have P4>0. 007263 ** 007264 ** This allows optimizations: (a) when P4==0 there is no need to test 007265 ** the RowSet object for P3, as it is guaranteed not to contain it, 007266 ** (b) when P4==-1 there is no need to insert the value, as it will 007267 ** never be tested for, and (c) when a value that is part of set X is 007268 ** inserted, there is no need to search to see if the same value was 007269 ** previously inserted as part of set X (only if it was previously 007270 ** inserted as part of some other set). 007271 */ 007272 case OP_RowSetTest: { /* jump, in1, in3 */ 007273 int iSet; 007274 int exists; 007275 007276 pIn1 = &aMem[pOp->p1]; 007277 pIn3 = &aMem[pOp->p3]; 007278 iSet = pOp->p4.i; 007279 assert( pIn3->flags&MEM_Int ); 007280 007281 /* If there is anything other than a rowset object in memory cell P1, 007282 ** delete it now and initialize P1 with an empty rowset 007283 */ 007284 if( (pIn1->flags & MEM_Blob)==0 ){ 007285 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007286 } 007287 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007288 assert( pOp->p4type==P4_INT32 ); 007289 assert( iSet==-1 || iSet>=0 ); 007290 if( iSet ){ 007291 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 007292 VdbeBranchTaken(exists!=0,2); 007293 if( exists ) goto jump_to_p2; 007294 } 007295 if( iSet>=0 ){ 007296 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 007297 } 007298 break; 007299 } 007300 007301 007302 #ifndef SQLITE_OMIT_TRIGGER 007303 007304 /* Opcode: Program P1 P2 P3 P4 P5 007305 ** 007306 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 007307 ** 007308 ** P1 contains the address of the memory cell that contains the first memory 007309 ** cell in an array of values used as arguments to the sub-program. P2 007310 ** contains the address to jump to if the sub-program throws an IGNORE 007311 ** exception using the RAISE() function. P2 might be zero, if there is 007312 ** no possibility that an IGNORE exception will be raised. 007313 ** Register P3 contains the address 007314 ** of a memory cell in this (the parent) VM that is used to allocate the 007315 ** memory required by the sub-vdbe at runtime. 007316 ** 007317 ** P4 is a pointer to the VM containing the trigger program. 007318 ** 007319 ** If P5 is non-zero, then recursive program invocation is enabled. 007320 */ 007321 case OP_Program: { /* jump0 */ 007322 int nMem; /* Number of memory registers for sub-program */ 007323 int nByte; /* Bytes of runtime space required for sub-program */ 007324 Mem *pRt; /* Register to allocate runtime space */ 007325 Mem *pMem; /* Used to iterate through memory cells */ 007326 Mem *pEnd; /* Last memory cell in new array */ 007327 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 007328 SubProgram *pProgram; /* Sub-program to execute */ 007329 void *t; /* Token identifying trigger */ 007330 007331 pProgram = pOp->p4.pProgram; 007332 pRt = &aMem[pOp->p3]; 007333 assert( pProgram->nOp>0 ); 007334 007335 /* If the p5 flag is clear, then recursive invocation of triggers is 007336 ** disabled for backwards compatibility (p5 is set if this sub-program 007337 ** is really a trigger, not a foreign key action, and the flag set 007338 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 007339 ** 007340 ** It is recursive invocation of triggers, at the SQL level, that is 007341 ** disabled. In some cases a single trigger may generate more than one 007342 ** SubProgram (if the trigger may be executed with more than one different 007343 ** ON CONFLICT algorithm). SubProgram structures associated with a 007344 ** single trigger all have the same value for the SubProgram.token 007345 ** variable. */ 007346 if( pOp->p5 ){ 007347 t = pProgram->token; 007348 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 007349 if( pFrame ) break; 007350 } 007351 007352 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 007353 rc = SQLITE_ERROR; 007354 sqlite3VdbeError(p, "too many levels of trigger recursion"); 007355 goto abort_due_to_error; 007356 } 007357 007358 /* Register pRt is used to store the memory required to save the state 007359 ** of the current program, and the memory required at runtime to execute 007360 ** the trigger program. If this trigger has been fired before, then pRt 007361 ** is already allocated. Otherwise, it must be initialized. */ 007362 if( (pRt->flags&MEM_Blob)==0 ){ 007363 /* SubProgram.nMem is set to the number of memory cells used by the 007364 ** program stored in SubProgram.aOp. As well as these, one memory 007365 ** cell is required for each cursor used by the program. Set local 007366 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 007367 */ 007368 nMem = pProgram->nMem + pProgram->nCsr; 007369 assert( nMem>0 ); 007370 if( pProgram->nCsr==0 ) nMem++; 007371 nByte = ROUND8(sizeof(VdbeFrame)) 007372 + nMem * sizeof(Mem) 007373 + pProgram->nCsr * sizeof(VdbeCursor*) 007374 + (pProgram->nOp + 7)/8; 007375 pFrame = sqlite3DbMallocZero(db, nByte); 007376 if( !pFrame ){ 007377 goto no_mem; 007378 } 007379 sqlite3VdbeMemRelease(pRt); 007380 pRt->flags = MEM_Blob|MEM_Dyn; 007381 pRt->z = (char*)pFrame; 007382 pRt->n = nByte; 007383 pRt->xDel = sqlite3VdbeFrameMemDel; 007384 007385 pFrame->v = p; 007386 pFrame->nChildMem = nMem; 007387 pFrame->nChildCsr = pProgram->nCsr; 007388 pFrame->pc = (int)(pOp - aOp); 007389 pFrame->aMem = p->aMem; 007390 pFrame->nMem = p->nMem; 007391 pFrame->apCsr = p->apCsr; 007392 pFrame->nCursor = p->nCursor; 007393 pFrame->aOp = p->aOp; 007394 pFrame->nOp = p->nOp; 007395 pFrame->token = pProgram->token; 007396 #ifdef SQLITE_DEBUG 007397 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 007398 #endif 007399 007400 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 007401 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 007402 pMem->flags = MEM_Undefined; 007403 pMem->db = db; 007404 } 007405 }else{ 007406 pFrame = (VdbeFrame*)pRt->z; 007407 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 007408 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 007409 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 007410 assert( pProgram->nCsr==pFrame->nChildCsr ); 007411 assert( (int)(pOp - aOp)==pFrame->pc ); 007412 } 007413 007414 p->nFrame++; 007415 pFrame->pParent = p->pFrame; 007416 pFrame->lastRowid = db->lastRowid; 007417 pFrame->nChange = p->nChange; 007418 pFrame->nDbChange = p->db->nChange; 007419 assert( pFrame->pAuxData==0 ); 007420 pFrame->pAuxData = p->pAuxData; 007421 p->pAuxData = 0; 007422 p->nChange = 0; 007423 p->pFrame = pFrame; 007424 p->aMem = aMem = VdbeFrameMem(pFrame); 007425 p->nMem = pFrame->nChildMem; 007426 p->nCursor = (u16)pFrame->nChildCsr; 007427 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 007428 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 007429 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 007430 p->aOp = aOp = pProgram->aOp; 007431 p->nOp = pProgram->nOp; 007432 #ifdef SQLITE_DEBUG 007433 /* Verify that second and subsequent executions of the same trigger do not 007434 ** try to reuse register values from the first use. */ 007435 { 007436 int i; 007437 for(i=0; i<p->nMem; i++){ 007438 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 007439 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 007440 } 007441 } 007442 #endif 007443 pOp = &aOp[-1]; 007444 goto check_for_interrupt; 007445 } 007446 007447 /* Opcode: Param P1 P2 * * * 007448 ** 007449 ** This opcode is only ever present in sub-programs called via the 007450 ** OP_Program instruction. Copy a value currently stored in a memory 007451 ** cell of the calling (parent) frame to cell P2 in the current frames 007452 ** address space. This is used by trigger programs to access the new.* 007453 ** and old.* values. 007454 ** 007455 ** The address of the cell in the parent frame is determined by adding 007456 ** the value of the P1 argument to the value of the P1 argument to the 007457 ** calling OP_Program instruction. 007458 */ 007459 case OP_Param: { /* out2 */ 007460 VdbeFrame *pFrame; 007461 Mem *pIn; 007462 pOut = out2Prerelease(p, pOp); 007463 pFrame = p->pFrame; 007464 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 007465 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 007466 break; 007467 } 007468 007469 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 007470 007471 #ifndef SQLITE_OMIT_FOREIGN_KEY 007472 /* Opcode: FkCounter P1 P2 * * * 007473 ** Synopsis: fkctr[P1]+=P2 007474 ** 007475 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 007476 ** If P1 is non-zero, the database constraint counter is incremented 007477 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 007478 ** statement counter is incremented (immediate foreign key constraints). 007479 */ 007480 case OP_FkCounter: { 007481 if( db->flags & SQLITE_DeferFKs ){ 007482 db->nDeferredImmCons += pOp->p2; 007483 }else if( pOp->p1 ){ 007484 db->nDeferredCons += pOp->p2; 007485 }else{ 007486 p->nFkConstraint += pOp->p2; 007487 } 007488 break; 007489 } 007490 007491 /* Opcode: FkIfZero P1 P2 * * * 007492 ** Synopsis: if fkctr[P1]==0 goto P2 007493 ** 007494 ** This opcode tests if a foreign key constraint-counter is currently zero. 007495 ** If so, jump to instruction P2. Otherwise, fall through to the next 007496 ** instruction. 007497 ** 007498 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 007499 ** is zero (the one that counts deferred constraint violations). If P1 is 007500 ** zero, the jump is taken if the statement constraint-counter is zero 007501 ** (immediate foreign key constraint violations). 007502 */ 007503 case OP_FkIfZero: { /* jump */ 007504 if( pOp->p1 ){ 007505 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 007506 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007507 }else{ 007508 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 007509 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007510 } 007511 break; 007512 } 007513 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 007514 007515 #ifndef SQLITE_OMIT_AUTOINCREMENT 007516 /* Opcode: MemMax P1 P2 * * * 007517 ** Synopsis: r[P1]=max(r[P1],r[P2]) 007518 ** 007519 ** P1 is a register in the root frame of this VM (the root frame is 007520 ** different from the current frame if this instruction is being executed 007521 ** within a sub-program). Set the value of register P1 to the maximum of 007522 ** its current value and the value in register P2. 007523 ** 007524 ** This instruction throws an error if the memory cell is not initially 007525 ** an integer. 007526 */ 007527 case OP_MemMax: { /* in2 */ 007528 VdbeFrame *pFrame; 007529 if( p->pFrame ){ 007530 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 007531 pIn1 = &pFrame->aMem[pOp->p1]; 007532 }else{ 007533 pIn1 = &aMem[pOp->p1]; 007534 } 007535 assert( memIsValid(pIn1) ); 007536 sqlite3VdbeMemIntegerify(pIn1); 007537 pIn2 = &aMem[pOp->p2]; 007538 sqlite3VdbeMemIntegerify(pIn2); 007539 if( pIn1->u.i<pIn2->u.i){ 007540 pIn1->u.i = pIn2->u.i; 007541 } 007542 break; 007543 } 007544 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 007545 007546 /* Opcode: IfPos P1 P2 P3 * * 007547 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 007548 ** 007549 ** Register P1 must contain an integer. 007550 ** If the value of register P1 is 1 or greater, subtract P3 from the 007551 ** value in P1 and jump to P2. 007552 ** 007553 ** If the initial value of register P1 is less than 1, then the 007554 ** value is unchanged and control passes through to the next instruction. 007555 */ 007556 case OP_IfPos: { /* jump, in1 */ 007557 pIn1 = &aMem[pOp->p1]; 007558 assert( pIn1->flags&MEM_Int ); 007559 VdbeBranchTaken( pIn1->u.i>0, 2); 007560 if( pIn1->u.i>0 ){ 007561 pIn1->u.i -= pOp->p3; 007562 goto jump_to_p2; 007563 } 007564 break; 007565 } 007566 007567 /* Opcode: OffsetLimit P1 P2 P3 * * 007568 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 007569 ** 007570 ** This opcode performs a commonly used computation associated with 007571 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] 007572 ** holds the offset counter. The opcode computes the combined value 007573 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 007574 ** value computed is the total number of rows that will need to be 007575 ** visited in order to complete the query. 007576 ** 007577 ** If r[P3] is zero or negative, that means there is no OFFSET 007578 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 007579 ** 007580 ** if r[P1] is zero or negative, that means there is no LIMIT 007581 ** and r[P2] is set to -1. 007582 ** 007583 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 007584 */ 007585 case OP_OffsetLimit: { /* in1, out2, in3 */ 007586 i64 x; 007587 pIn1 = &aMem[pOp->p1]; 007588 pIn3 = &aMem[pOp->p3]; 007589 pOut = out2Prerelease(p, pOp); 007590 assert( pIn1->flags & MEM_Int ); 007591 assert( pIn3->flags & MEM_Int ); 007592 x = pIn1->u.i; 007593 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 007594 /* If the LIMIT is less than or equal to zero, loop forever. This 007595 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 007596 ** also loop forever. This is undocumented. In fact, one could argue 007597 ** that the loop should terminate. But assuming 1 billion iterations 007598 ** per second (far exceeding the capabilities of any current hardware) 007599 ** it would take nearly 300 years to actually reach the limit. So 007600 ** looping forever is a reasonable approximation. */ 007601 pOut->u.i = -1; 007602 }else{ 007603 pOut->u.i = x; 007604 } 007605 break; 007606 } 007607 007608 /* Opcode: IfNotZero P1 P2 * * * 007609 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 007610 ** 007611 ** Register P1 must contain an integer. If the content of register P1 is 007612 ** initially greater than zero, then decrement the value in register P1. 007613 ** If it is non-zero (negative or positive) and then also jump to P2. 007614 ** If register P1 is initially zero, leave it unchanged and fall through. 007615 */ 007616 case OP_IfNotZero: { /* jump, in1 */ 007617 pIn1 = &aMem[pOp->p1]; 007618 assert( pIn1->flags&MEM_Int ); 007619 VdbeBranchTaken(pIn1->u.i<0, 2); 007620 if( pIn1->u.i ){ 007621 if( pIn1->u.i>0 ) pIn1->u.i--; 007622 goto jump_to_p2; 007623 } 007624 break; 007625 } 007626 007627 /* Opcode: DecrJumpZero P1 P2 * * * 007628 ** Synopsis: if (--r[P1])==0 goto P2 007629 ** 007630 ** Register P1 must hold an integer. Decrement the value in P1 007631 ** and jump to P2 if the new value is exactly zero. 007632 */ 007633 case OP_DecrJumpZero: { /* jump, in1 */ 007634 pIn1 = &aMem[pOp->p1]; 007635 assert( pIn1->flags&MEM_Int ); 007636 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 007637 VdbeBranchTaken(pIn1->u.i==0, 2); 007638 if( pIn1->u.i==0 ) goto jump_to_p2; 007639 break; 007640 } 007641 007642 007643 /* Opcode: AggStep * P2 P3 P4 P5 007644 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007645 ** 007646 ** Execute the xStep function for an aggregate. 007647 ** The function has P5 arguments. P4 is a pointer to the 007648 ** FuncDef structure that specifies the function. Register P3 is the 007649 ** accumulator. 007650 ** 007651 ** The P5 arguments are taken from register P2 and its 007652 ** successors. 007653 */ 007654 /* Opcode: AggInverse * P2 P3 P4 P5 007655 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 007656 ** 007657 ** Execute the xInverse function for an aggregate. 007658 ** The function has P5 arguments. P4 is a pointer to the 007659 ** FuncDef structure that specifies the function. Register P3 is the 007660 ** accumulator. 007661 ** 007662 ** The P5 arguments are taken from register P2 and its 007663 ** successors. 007664 */ 007665 /* Opcode: AggStep1 P1 P2 P3 P4 P5 007666 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007667 ** 007668 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 007669 ** aggregate. The function has P5 arguments. P4 is a pointer to the 007670 ** FuncDef structure that specifies the function. Register P3 is the 007671 ** accumulator. 007672 ** 007673 ** The P5 arguments are taken from register P2 and its 007674 ** successors. 007675 ** 007676 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 007677 ** the FuncDef stored in P4 is converted into an sqlite3_context and 007678 ** the opcode is changed. In this way, the initialization of the 007679 ** sqlite3_context only happens once, instead of on each call to the 007680 ** step function. 007681 */ 007682 case OP_AggInverse: 007683 case OP_AggStep: { 007684 int n; 007685 sqlite3_context *pCtx; 007686 u64 nAlloc; 007687 007688 assert( pOp->p4type==P4_FUNCDEF ); 007689 n = pOp->p5; 007690 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 007691 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 007692 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 007693 007694 /* Allocate space for (a) the context object and (n-1) extra pointers 007695 ** to append to the sqlite3_context.argv[1] array, and (b) a memory 007696 ** cell in which to store the accumulation. Be careful that the memory 007697 ** cell is 8-byte aligned, even on platforms where a pointer is 32-bits. 007698 ** 007699 ** Note: We could avoid this by using a regular memory cell from aMem[] for 007700 ** the accumulator, instead of allocating one here. */ 007701 nAlloc = ROUND8P( sizeof(pCtx[0]) + (n-1)*sizeof(sqlite3_value*) ); 007702 pCtx = sqlite3DbMallocRawNN(db, nAlloc + sizeof(Mem)); 007703 if( pCtx==0 ) goto no_mem; 007704 pCtx->pOut = (Mem*)((u8*)pCtx + nAlloc); 007705 assert( EIGHT_BYTE_ALIGNMENT(pCtx->pOut) ); 007706 007707 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 007708 pCtx->pMem = 0; 007709 pCtx->pFunc = pOp->p4.pFunc; 007710 pCtx->iOp = (int)(pOp - aOp); 007711 pCtx->pVdbe = p; 007712 pCtx->skipFlag = 0; 007713 pCtx->isError = 0; 007714 pCtx->enc = encoding; 007715 pCtx->argc = n; 007716 pOp->p4type = P4_FUNCCTX; 007717 pOp->p4.pCtx = pCtx; 007718 007719 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 007720 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 007721 007722 pOp->opcode = OP_AggStep1; 007723 /* Fall through into OP_AggStep */ 007724 /* no break */ deliberate_fall_through 007725 } 007726 case OP_AggStep1: { 007727 int i; 007728 sqlite3_context *pCtx; 007729 Mem *pMem; 007730 007731 assert( pOp->p4type==P4_FUNCCTX ); 007732 pCtx = pOp->p4.pCtx; 007733 pMem = &aMem[pOp->p3]; 007734 007735 #ifdef SQLITE_DEBUG 007736 if( pOp->p1 ){ 007737 /* This is an OP_AggInverse call. Verify that xStep has always 007738 ** been called at least once prior to any xInverse call. */ 007739 assert( pMem->uTemp==0x1122e0e3 ); 007740 }else{ 007741 /* This is an OP_AggStep call. Mark it as such. */ 007742 pMem->uTemp = 0x1122e0e3; 007743 } 007744 #endif 007745 007746 /* If this function is inside of a trigger, the register array in aMem[] 007747 ** might change from one evaluation to the next. The next block of code 007748 ** checks to see if the register array has changed, and if so it 007749 ** reinitializes the relevant parts of the sqlite3_context object */ 007750 if( pCtx->pMem != pMem ){ 007751 pCtx->pMem = pMem; 007752 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 007753 } 007754 007755 #ifdef SQLITE_DEBUG 007756 for(i=0; i<pCtx->argc; i++){ 007757 assert( memIsValid(pCtx->argv[i]) ); 007758 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 007759 } 007760 #endif 007761 007762 pMem->n++; 007763 assert( pCtx->pOut->flags==MEM_Null ); 007764 assert( pCtx->isError==0 ); 007765 assert( pCtx->skipFlag==0 ); 007766 #ifndef SQLITE_OMIT_WINDOWFUNC 007767 if( pOp->p1 ){ 007768 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 007769 }else 007770 #endif 007771 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 007772 007773 if( pCtx->isError ){ 007774 if( pCtx->isError>0 ){ 007775 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 007776 rc = pCtx->isError; 007777 } 007778 if( pCtx->skipFlag ){ 007779 assert( pOp[-1].opcode==OP_CollSeq ); 007780 i = pOp[-1].p1; 007781 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 007782 pCtx->skipFlag = 0; 007783 } 007784 sqlite3VdbeMemRelease(pCtx->pOut); 007785 pCtx->pOut->flags = MEM_Null; 007786 pCtx->isError = 0; 007787 if( rc ) goto abort_due_to_error; 007788 } 007789 assert( pCtx->pOut->flags==MEM_Null ); 007790 assert( pCtx->skipFlag==0 ); 007791 break; 007792 } 007793 007794 /* Opcode: AggFinal P1 P2 * P4 * 007795 ** Synopsis: accum=r[P1] N=P2 007796 ** 007797 ** P1 is the memory location that is the accumulator for an aggregate 007798 ** or window function. Execute the finalizer function 007799 ** for an aggregate and store the result in P1. 007800 ** 007801 ** P2 is the number of arguments that the step function takes and 007802 ** P4 is a pointer to the FuncDef for this function. The P2 007803 ** argument is not used by this opcode. It is only there to disambiguate 007804 ** functions that can take varying numbers of arguments. The 007805 ** P4 argument is only needed for the case where 007806 ** the step function was not previously called. 007807 */ 007808 /* Opcode: AggValue * P2 P3 P4 * 007809 ** Synopsis: r[P3]=value N=P2 007810 ** 007811 ** Invoke the xValue() function and store the result in register P3. 007812 ** 007813 ** P2 is the number of arguments that the step function takes and 007814 ** P4 is a pointer to the FuncDef for this function. The P2 007815 ** argument is not used by this opcode. It is only there to disambiguate 007816 ** functions that can take varying numbers of arguments. The 007817 ** P4 argument is only needed for the case where 007818 ** the step function was not previously called. 007819 */ 007820 case OP_AggValue: 007821 case OP_AggFinal: { 007822 Mem *pMem; 007823 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 007824 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 007825 pMem = &aMem[pOp->p1]; 007826 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 007827 #ifndef SQLITE_OMIT_WINDOWFUNC 007828 if( pOp->p3 ){ 007829 memAboutToChange(p, &aMem[pOp->p3]); 007830 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 007831 pMem = &aMem[pOp->p3]; 007832 }else 007833 #endif 007834 { 007835 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 007836 } 007837 007838 if( rc ){ 007839 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 007840 goto abort_due_to_error; 007841 } 007842 sqlite3VdbeChangeEncoding(pMem, encoding); 007843 UPDATE_MAX_BLOBSIZE(pMem); 007844 REGISTER_TRACE((int)(pMem-aMem), pMem); 007845 break; 007846 } 007847 007848 #ifndef SQLITE_OMIT_WAL 007849 /* Opcode: Checkpoint P1 P2 P3 * * 007850 ** 007851 ** Checkpoint database P1. This is a no-op if P1 is not currently in 007852 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 007853 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 007854 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 007855 ** WAL after the checkpoint into mem[P3+1] and the number of pages 007856 ** in the WAL that have been checkpointed after the checkpoint 007857 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 007858 ** mem[P3+2] are initialized to -1. 007859 */ 007860 case OP_Checkpoint: { 007861 int i; /* Loop counter */ 007862 int aRes[3]; /* Results */ 007863 Mem *pMem; /* Write results here */ 007864 007865 assert( p->readOnly==0 ); 007866 aRes[0] = 0; 007867 aRes[1] = aRes[2] = -1; 007868 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 007869 || pOp->p2==SQLITE_CHECKPOINT_FULL 007870 || pOp->p2==SQLITE_CHECKPOINT_RESTART 007871 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 007872 ); 007873 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 007874 if( rc ){ 007875 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 007876 rc = SQLITE_OK; 007877 aRes[0] = 1; 007878 } 007879 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 007880 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 007881 } 007882 break; 007883 }; 007884 #endif 007885 007886 #ifndef SQLITE_OMIT_PRAGMA 007887 /* Opcode: JournalMode P1 P2 P3 * * 007888 ** 007889 ** Change the journal mode of database P1 to P3. P3 must be one of the 007890 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 007891 ** modes (delete, truncate, persist, off and memory), this is a simple 007892 ** operation. No IO is required. 007893 ** 007894 ** If changing into or out of WAL mode the procedure is more complicated. 007895 ** 007896 ** Write a string containing the final journal-mode to register P2. 007897 */ 007898 case OP_JournalMode: { /* out2 */ 007899 Btree *pBt; /* Btree to change journal mode of */ 007900 Pager *pPager; /* Pager associated with pBt */ 007901 int eNew; /* New journal mode */ 007902 int eOld; /* The old journal mode */ 007903 #ifndef SQLITE_OMIT_WAL 007904 const char *zFilename; /* Name of database file for pPager */ 007905 #endif 007906 007907 pOut = out2Prerelease(p, pOp); 007908 eNew = pOp->p3; 007909 assert( eNew==PAGER_JOURNALMODE_DELETE 007910 || eNew==PAGER_JOURNALMODE_TRUNCATE 007911 || eNew==PAGER_JOURNALMODE_PERSIST 007912 || eNew==PAGER_JOURNALMODE_OFF 007913 || eNew==PAGER_JOURNALMODE_MEMORY 007914 || eNew==PAGER_JOURNALMODE_WAL 007915 || eNew==PAGER_JOURNALMODE_QUERY 007916 ); 007917 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007918 assert( p->readOnly==0 ); 007919 007920 pBt = db->aDb[pOp->p1].pBt; 007921 pPager = sqlite3BtreePager(pBt); 007922 eOld = sqlite3PagerGetJournalMode(pPager); 007923 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 007924 assert( sqlite3BtreeHoldsMutex(pBt) ); 007925 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 007926 007927 #ifndef SQLITE_OMIT_WAL 007928 zFilename = sqlite3PagerFilename(pPager, 1); 007929 007930 /* Do not allow a transition to journal_mode=WAL for a database 007931 ** in temporary storage or if the VFS does not support shared memory 007932 */ 007933 if( eNew==PAGER_JOURNALMODE_WAL 007934 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 007935 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 007936 ){ 007937 eNew = eOld; 007938 } 007939 007940 if( (eNew!=eOld) 007941 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 007942 ){ 007943 if( !db->autoCommit || db->nVdbeRead>1 ){ 007944 rc = SQLITE_ERROR; 007945 sqlite3VdbeError(p, 007946 "cannot change %s wal mode from within a transaction", 007947 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 007948 ); 007949 goto abort_due_to_error; 007950 }else{ 007951 007952 if( eOld==PAGER_JOURNALMODE_WAL ){ 007953 /* If leaving WAL mode, close the log file. If successful, the call 007954 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 007955 ** file. An EXCLUSIVE lock may still be held on the database file 007956 ** after a successful return. 007957 */ 007958 rc = sqlite3PagerCloseWal(pPager, db); 007959 if( rc==SQLITE_OK ){ 007960 sqlite3PagerSetJournalMode(pPager, eNew); 007961 } 007962 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 007963 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 007964 ** as an intermediate */ 007965 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 007966 } 007967 007968 /* Open a transaction on the database file. Regardless of the journal 007969 ** mode, this transaction always uses a rollback journal. 007970 */ 007971 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 007972 if( rc==SQLITE_OK ){ 007973 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 007974 } 007975 } 007976 } 007977 #endif /* ifndef SQLITE_OMIT_WAL */ 007978 007979 if( rc ) eNew = eOld; 007980 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 007981 007982 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 007983 pOut->z = (char *)sqlite3JournalModename(eNew); 007984 pOut->n = sqlite3Strlen30(pOut->z); 007985 pOut->enc = SQLITE_UTF8; 007986 sqlite3VdbeChangeEncoding(pOut, encoding); 007987 if( rc ) goto abort_due_to_error; 007988 break; 007989 }; 007990 #endif /* SQLITE_OMIT_PRAGMA */ 007991 007992 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 007993 /* Opcode: Vacuum P1 P2 * * * 007994 ** 007995 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 007996 ** for an attached database. The "temp" database may not be vacuumed. 007997 ** 007998 ** If P2 is not zero, then it is a register holding a string which is 007999 ** the file into which the result of vacuum should be written. When 008000 ** P2 is zero, the vacuum overwrites the original database. 008001 */ 008002 case OP_Vacuum: { 008003 assert( p->readOnly==0 ); 008004 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 008005 pOp->p2 ? &aMem[pOp->p2] : 0); 008006 if( rc ) goto abort_due_to_error; 008007 break; 008008 } 008009 #endif 008010 008011 #if !defined(SQLITE_OMIT_AUTOVACUUM) 008012 /* Opcode: IncrVacuum P1 P2 * * * 008013 ** 008014 ** Perform a single step of the incremental vacuum procedure on 008015 ** the P1 database. If the vacuum has finished, jump to instruction 008016 ** P2. Otherwise, fall through to the next instruction. 008017 */ 008018 case OP_IncrVacuum: { /* jump */ 008019 Btree *pBt; 008020 008021 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 008022 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 008023 assert( p->readOnly==0 ); 008024 pBt = db->aDb[pOp->p1].pBt; 008025 rc = sqlite3BtreeIncrVacuum(pBt); 008026 VdbeBranchTaken(rc==SQLITE_DONE,2); 008027 if( rc ){ 008028 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 008029 rc = SQLITE_OK; 008030 goto jump_to_p2; 008031 } 008032 break; 008033 } 008034 #endif 008035 008036 /* Opcode: Expire P1 P2 * * * 008037 ** 008038 ** Cause precompiled statements to expire. When an expired statement 008039 ** is executed using sqlite3_step() it will either automatically 008040 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 008041 ** or it will fail with SQLITE_SCHEMA. 008042 ** 008043 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 008044 ** then only the currently executing statement is expired. 008045 ** 008046 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 008047 ** then running SQL statements are allowed to continue to run to completion. 008048 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 008049 ** that might help the statement run faster but which does not affect the 008050 ** correctness of operation. 008051 */ 008052 case OP_Expire: { 008053 assert( pOp->p2==0 || pOp->p2==1 ); 008054 if( !pOp->p1 ){ 008055 sqlite3ExpirePreparedStatements(db, pOp->p2); 008056 }else{ 008057 p->expired = pOp->p2+1; 008058 } 008059 break; 008060 } 008061 008062 /* Opcode: CursorLock P1 * * * * 008063 ** 008064 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 008065 ** written by an other cursor. 008066 */ 008067 case OP_CursorLock: { 008068 VdbeCursor *pC; 008069 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008070 pC = p->apCsr[pOp->p1]; 008071 assert( pC!=0 ); 008072 assert( pC->eCurType==CURTYPE_BTREE ); 008073 sqlite3BtreeCursorPin(pC->uc.pCursor); 008074 break; 008075 } 008076 008077 /* Opcode: CursorUnlock P1 * * * * 008078 ** 008079 ** Unlock the btree to which cursor P1 is pointing so that it can be 008080 ** written by other cursors. 008081 */ 008082 case OP_CursorUnlock: { 008083 VdbeCursor *pC; 008084 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008085 pC = p->apCsr[pOp->p1]; 008086 assert( pC!=0 ); 008087 assert( pC->eCurType==CURTYPE_BTREE ); 008088 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 008089 break; 008090 } 008091 008092 #ifndef SQLITE_OMIT_SHARED_CACHE 008093 /* Opcode: TableLock P1 P2 P3 P4 * 008094 ** Synopsis: iDb=P1 root=P2 write=P3 008095 ** 008096 ** Obtain a lock on a particular table. This instruction is only used when 008097 ** the shared-cache feature is enabled. 008098 ** 008099 ** P1 is the index of the database in sqlite3.aDb[] of the database 008100 ** on which the lock is acquired. A readlock is obtained if P3==0 or 008101 ** a write lock if P3==1. 008102 ** 008103 ** P2 contains the root-page of the table to lock. 008104 ** 008105 ** P4 contains a pointer to the name of the table being locked. This is only 008106 ** used to generate an error message if the lock cannot be obtained. 008107 */ 008108 case OP_TableLock: { 008109 u8 isWriteLock = (u8)pOp->p3; 008110 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 008111 int p1 = pOp->p1; 008112 assert( p1>=0 && p1<db->nDb ); 008113 assert( DbMaskTest(p->btreeMask, p1) ); 008114 assert( isWriteLock==0 || isWriteLock==1 ); 008115 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 008116 if( rc ){ 008117 if( (rc&0xFF)==SQLITE_LOCKED ){ 008118 const char *z = pOp->p4.z; 008119 sqlite3VdbeError(p, "database table is locked: %s", z); 008120 } 008121 goto abort_due_to_error; 008122 } 008123 } 008124 break; 008125 } 008126 #endif /* SQLITE_OMIT_SHARED_CACHE */ 008127 008128 #ifndef SQLITE_OMIT_VIRTUALTABLE 008129 /* Opcode: VBegin * * * P4 * 008130 ** 008131 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 008132 ** xBegin method for that table. 008133 ** 008134 ** Also, whether or not P4 is set, check that this is not being called from 008135 ** within a callback to a virtual table xSync() method. If it is, the error 008136 ** code will be set to SQLITE_LOCKED. 008137 */ 008138 case OP_VBegin: { 008139 VTable *pVTab; 008140 pVTab = pOp->p4.pVtab; 008141 rc = sqlite3VtabBegin(db, pVTab); 008142 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 008143 if( rc ) goto abort_due_to_error; 008144 break; 008145 } 008146 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008147 008148 #ifndef SQLITE_OMIT_VIRTUALTABLE 008149 /* Opcode: VCreate P1 P2 * * * 008150 ** 008151 ** P2 is a register that holds the name of a virtual table in database 008152 ** P1. Call the xCreate method for that table. 008153 */ 008154 case OP_VCreate: { 008155 Mem sMem; /* For storing the record being decoded */ 008156 const char *zTab; /* Name of the virtual table */ 008157 008158 memset(&sMem, 0, sizeof(sMem)); 008159 sMem.db = db; 008160 /* Because P2 is always a static string, it is impossible for the 008161 ** sqlite3VdbeMemCopy() to fail */ 008162 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 008163 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 008164 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 008165 assert( rc==SQLITE_OK ); 008166 zTab = (const char*)sqlite3_value_text(&sMem); 008167 assert( zTab || db->mallocFailed ); 008168 if( zTab ){ 008169 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 008170 } 008171 sqlite3VdbeMemRelease(&sMem); 008172 if( rc ) goto abort_due_to_error; 008173 break; 008174 } 008175 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008176 008177 #ifndef SQLITE_OMIT_VIRTUALTABLE 008178 /* Opcode: VDestroy P1 * * P4 * 008179 ** 008180 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 008181 ** of that table. 008182 */ 008183 case OP_VDestroy: { 008184 db->nVDestroy++; 008185 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 008186 db->nVDestroy--; 008187 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 008188 if( rc ) goto abort_due_to_error; 008189 break; 008190 } 008191 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008192 008193 #ifndef SQLITE_OMIT_VIRTUALTABLE 008194 /* Opcode: VOpen P1 * * P4 * 008195 ** 008196 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008197 ** P1 is a cursor number. This opcode opens a cursor to the virtual 008198 ** table and stores that cursor in P1. 008199 */ 008200 case OP_VOpen: { /* ncycle */ 008201 VdbeCursor *pCur; 008202 sqlite3_vtab_cursor *pVCur; 008203 sqlite3_vtab *pVtab; 008204 const sqlite3_module *pModule; 008205 008206 assert( p->bIsReader ); 008207 pCur = 0; 008208 pVCur = 0; 008209 pVtab = pOp->p4.pVtab->pVtab; 008210 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008211 rc = SQLITE_LOCKED; 008212 goto abort_due_to_error; 008213 } 008214 pModule = pVtab->pModule; 008215 rc = pModule->xOpen(pVtab, &pVCur); 008216 sqlite3VtabImportErrmsg(p, pVtab); 008217 if( rc ) goto abort_due_to_error; 008218 008219 /* Initialize sqlite3_vtab_cursor base class */ 008220 pVCur->pVtab = pVtab; 008221 008222 /* Initialize vdbe cursor object */ 008223 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 008224 if( pCur ){ 008225 pCur->uc.pVCur = pVCur; 008226 pVtab->nRef++; 008227 }else{ 008228 assert( db->mallocFailed ); 008229 pModule->xClose(pVCur); 008230 goto no_mem; 008231 } 008232 break; 008233 } 008234 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008235 008236 #ifndef SQLITE_OMIT_VIRTUALTABLE 008237 /* Opcode: VCheck P1 P2 P3 P4 * 008238 ** 008239 ** P4 is a pointer to a Table object that is a virtual table in schema P1 008240 ** that supports the xIntegrity() method. This opcode runs the xIntegrity() 008241 ** method for that virtual table, using P3 as the integer argument. If 008242 ** an error is reported back, the table name is prepended to the error 008243 ** message and that message is stored in P2. If no errors are seen, 008244 ** register P2 is set to NULL. 008245 */ 008246 case OP_VCheck: { /* out2 */ 008247 Table *pTab; 008248 sqlite3_vtab *pVtab; 008249 const sqlite3_module *pModule; 008250 char *zErr = 0; 008251 008252 pOut = &aMem[pOp->p2]; 008253 sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */ 008254 assert( pOp->p4type==P4_TABLEREF ); 008255 pTab = pOp->p4.pTab; 008256 assert( pTab!=0 ); 008257 assert( pTab->nTabRef>0 ); 008258 assert( IsVirtual(pTab) ); 008259 if( pTab->u.vtab.p==0 ) break; 008260 pVtab = pTab->u.vtab.p->pVtab; 008261 assert( pVtab!=0 ); 008262 pModule = pVtab->pModule; 008263 assert( pModule!=0 ); 008264 assert( pModule->iVersion>=4 ); 008265 assert( pModule->xIntegrity!=0 ); 008266 sqlite3VtabLock(pTab->u.vtab.p); 008267 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 008268 rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName, 008269 pOp->p3, &zErr); 008270 sqlite3VtabUnlock(pTab->u.vtab.p); 008271 if( rc ){ 008272 sqlite3_free(zErr); 008273 goto abort_due_to_error; 008274 } 008275 if( zErr ){ 008276 sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free); 008277 } 008278 break; 008279 } 008280 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008281 008282 #ifndef SQLITE_OMIT_VIRTUALTABLE 008283 /* Opcode: VInitIn P1 P2 P3 * * 008284 ** Synopsis: r[P2]=ValueList(P1,P3) 008285 ** 008286 ** Set register P2 to be a pointer to a ValueList object for cursor P1 008287 ** with cache register P3 and output register P3+1. This ValueList object 008288 ** can be used as the first argument to sqlite3_vtab_in_first() and 008289 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 008290 ** cursor. Register P3 is used to hold the values returned by 008291 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 008292 */ 008293 case OP_VInitIn: { /* out2, ncycle */ 008294 VdbeCursor *pC; /* The cursor containing the RHS values */ 008295 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 008296 008297 pC = p->apCsr[pOp->p1]; 008298 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 008299 if( pRhs==0 ) goto no_mem; 008300 pRhs->pCsr = pC->uc.pCursor; 008301 pRhs->pOut = &aMem[pOp->p3]; 008302 pOut = out2Prerelease(p, pOp); 008303 pOut->flags = MEM_Null; 008304 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree); 008305 break; 008306 } 008307 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008308 008309 008310 #ifndef SQLITE_OMIT_VIRTUALTABLE 008311 /* Opcode: VFilter P1 P2 P3 P4 * 008312 ** Synopsis: iplan=r[P3] zplan='P4' 008313 ** 008314 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 008315 ** the filtered result set is empty. 008316 ** 008317 ** P4 is either NULL or a string that was generated by the xBestIndex 008318 ** method of the module. The interpretation of the P4 string is left 008319 ** to the module implementation. 008320 ** 008321 ** This opcode invokes the xFilter method on the virtual table specified 008322 ** by P1. The integer query plan parameter to xFilter is stored in register 008323 ** P3. Register P3+1 stores the argc parameter to be passed to the 008324 ** xFilter method. Registers P3+2..P3+1+argc are the argc 008325 ** additional parameters which are passed to 008326 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 008327 ** 008328 ** A jump is made to P2 if the result set after filtering would be empty. 008329 */ 008330 case OP_VFilter: { /* jump, ncycle */ 008331 int nArg; 008332 int iQuery; 008333 const sqlite3_module *pModule; 008334 Mem *pQuery; 008335 Mem *pArgc; 008336 sqlite3_vtab_cursor *pVCur; 008337 sqlite3_vtab *pVtab; 008338 VdbeCursor *pCur; 008339 int res; 008340 int i; 008341 Mem **apArg; 008342 008343 pQuery = &aMem[pOp->p3]; 008344 pArgc = &pQuery[1]; 008345 pCur = p->apCsr[pOp->p1]; 008346 assert( memIsValid(pQuery) ); 008347 REGISTER_TRACE(pOp->p3, pQuery); 008348 assert( pCur!=0 ); 008349 assert( pCur->eCurType==CURTYPE_VTAB ); 008350 pVCur = pCur->uc.pVCur; 008351 pVtab = pVCur->pVtab; 008352 pModule = pVtab->pModule; 008353 008354 /* Grab the index number and argc parameters */ 008355 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 008356 nArg = (int)pArgc->u.i; 008357 iQuery = (int)pQuery->u.i; 008358 008359 /* Invoke the xFilter method */ 008360 apArg = p->apArg; 008361 for(i = 0; i<nArg; i++){ 008362 apArg[i] = &pArgc[i+1]; 008363 } 008364 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 008365 sqlite3VtabImportErrmsg(p, pVtab); 008366 if( rc ) goto abort_due_to_error; 008367 res = pModule->xEof(pVCur); 008368 pCur->nullRow = 0; 008369 VdbeBranchTaken(res!=0,2); 008370 if( res ) goto jump_to_p2; 008371 break; 008372 } 008373 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008374 008375 #ifndef SQLITE_OMIT_VIRTUALTABLE 008376 /* Opcode: VColumn P1 P2 P3 * P5 008377 ** Synopsis: r[P3]=vcolumn(P2) 008378 ** 008379 ** Store in register P3 the value of the P2-th column of 008380 ** the current row of the virtual-table of cursor P1. 008381 ** 008382 ** If the VColumn opcode is being used to fetch the value of 008383 ** an unchanging column during an UPDATE operation, then the P5 008384 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 008385 ** function to return true inside the xColumn method of the virtual 008386 ** table implementation. The P5 column might also contain other 008387 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 008388 ** unused by OP_VColumn. 008389 */ 008390 case OP_VColumn: { /* ncycle */ 008391 sqlite3_vtab *pVtab; 008392 const sqlite3_module *pModule; 008393 Mem *pDest; 008394 sqlite3_context sContext; 008395 FuncDef nullFunc; 008396 008397 VdbeCursor *pCur = p->apCsr[pOp->p1]; 008398 assert( pCur!=0 ); 008399 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 008400 pDest = &aMem[pOp->p3]; 008401 memAboutToChange(p, pDest); 008402 if( pCur->nullRow ){ 008403 sqlite3VdbeMemSetNull(pDest); 008404 break; 008405 } 008406 assert( pCur->eCurType==CURTYPE_VTAB ); 008407 pVtab = pCur->uc.pVCur->pVtab; 008408 pModule = pVtab->pModule; 008409 assert( pModule->xColumn ); 008410 memset(&sContext, 0, sizeof(sContext)); 008411 sContext.pOut = pDest; 008412 sContext.enc = encoding; 008413 nullFunc.pUserData = 0; 008414 nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE; 008415 sContext.pFunc = &nullFunc; 008416 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 008417 if( pOp->p5 & OPFLAG_NOCHNG ){ 008418 sqlite3VdbeMemSetNull(pDest); 008419 pDest->flags = MEM_Null|MEM_Zero; 008420 pDest->u.nZero = 0; 008421 }else{ 008422 MemSetTypeFlag(pDest, MEM_Null); 008423 } 008424 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 008425 sqlite3VtabImportErrmsg(p, pVtab); 008426 if( sContext.isError>0 ){ 008427 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 008428 rc = sContext.isError; 008429 } 008430 sqlite3VdbeChangeEncoding(pDest, encoding); 008431 REGISTER_TRACE(pOp->p3, pDest); 008432 UPDATE_MAX_BLOBSIZE(pDest); 008433 008434 if( rc ) goto abort_due_to_error; 008435 break; 008436 } 008437 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008438 008439 #ifndef SQLITE_OMIT_VIRTUALTABLE 008440 /* Opcode: VNext P1 P2 * * * 008441 ** 008442 ** Advance virtual table P1 to the next row in its result set and 008443 ** jump to instruction P2. Or, if the virtual table has reached 008444 ** the end of its result set, then fall through to the next instruction. 008445 */ 008446 case OP_VNext: { /* jump, ncycle */ 008447 sqlite3_vtab *pVtab; 008448 const sqlite3_module *pModule; 008449 int res; 008450 VdbeCursor *pCur; 008451 008452 pCur = p->apCsr[pOp->p1]; 008453 assert( pCur!=0 ); 008454 assert( pCur->eCurType==CURTYPE_VTAB ); 008455 if( pCur->nullRow ){ 008456 break; 008457 } 008458 pVtab = pCur->uc.pVCur->pVtab; 008459 pModule = pVtab->pModule; 008460 assert( pModule->xNext ); 008461 008462 /* Invoke the xNext() method of the module. There is no way for the 008463 ** underlying implementation to return an error if one occurs during 008464 ** xNext(). Instead, if an error occurs, true is returned (indicating that 008465 ** data is available) and the error code returned when xColumn or 008466 ** some other method is next invoked on the save virtual table cursor. 008467 */ 008468 rc = pModule->xNext(pCur->uc.pVCur); 008469 sqlite3VtabImportErrmsg(p, pVtab); 008470 if( rc ) goto abort_due_to_error; 008471 res = pModule->xEof(pCur->uc.pVCur); 008472 VdbeBranchTaken(!res,2); 008473 if( !res ){ 008474 /* If there is data, jump to P2 */ 008475 goto jump_to_p2_and_check_for_interrupt; 008476 } 008477 goto check_for_interrupt; 008478 } 008479 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008480 008481 #ifndef SQLITE_OMIT_VIRTUALTABLE 008482 /* Opcode: VRename P1 * * P4 * 008483 ** 008484 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008485 ** This opcode invokes the corresponding xRename method. The value 008486 ** in register P1 is passed as the zName argument to the xRename method. 008487 */ 008488 case OP_VRename: { 008489 sqlite3_vtab *pVtab; 008490 Mem *pName; 008491 int isLegacy; 008492 008493 isLegacy = (db->flags & SQLITE_LegacyAlter); 008494 db->flags |= SQLITE_LegacyAlter; 008495 pVtab = pOp->p4.pVtab->pVtab; 008496 pName = &aMem[pOp->p1]; 008497 assert( pVtab->pModule->xRename ); 008498 assert( memIsValid(pName) ); 008499 assert( p->readOnly==0 ); 008500 REGISTER_TRACE(pOp->p1, pName); 008501 assert( pName->flags & MEM_Str ); 008502 testcase( pName->enc==SQLITE_UTF8 ); 008503 testcase( pName->enc==SQLITE_UTF16BE ); 008504 testcase( pName->enc==SQLITE_UTF16LE ); 008505 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 008506 if( rc ) goto abort_due_to_error; 008507 rc = pVtab->pModule->xRename(pVtab, pName->z); 008508 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 008509 sqlite3VtabImportErrmsg(p, pVtab); 008510 p->expired = 0; 008511 if( rc ) goto abort_due_to_error; 008512 break; 008513 } 008514 #endif 008515 008516 #ifndef SQLITE_OMIT_VIRTUALTABLE 008517 /* Opcode: VUpdate P1 P2 P3 P4 P5 008518 ** Synopsis: data=r[P3@P2] 008519 ** 008520 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008521 ** This opcode invokes the corresponding xUpdate method. P2 values 008522 ** are contiguous memory cells starting at P3 to pass to the xUpdate 008523 ** invocation. The value in register (P3+P2-1) corresponds to the 008524 ** p2th element of the argv array passed to xUpdate. 008525 ** 008526 ** The xUpdate method will do a DELETE or an INSERT or both. 008527 ** The argv[0] element (which corresponds to memory cell P3) 008528 ** is the rowid of a row to delete. If argv[0] is NULL then no 008529 ** deletion occurs. The argv[1] element is the rowid of the new 008530 ** row. This can be NULL to have the virtual table select the new 008531 ** rowid for itself. The subsequent elements in the array are 008532 ** the values of columns in the new row. 008533 ** 008534 ** If P2==1 then no insert is performed. argv[0] is the rowid of 008535 ** a row to delete. 008536 ** 008537 ** P1 is a boolean flag. If it is set to true and the xUpdate call 008538 ** is successful, then the value returned by sqlite3_last_insert_rowid() 008539 ** is set to the value of the rowid for the row just inserted. 008540 ** 008541 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 008542 ** apply in the case of a constraint failure on an insert or update. 008543 */ 008544 case OP_VUpdate: { 008545 sqlite3_vtab *pVtab; 008546 const sqlite3_module *pModule; 008547 int nArg; 008548 int i; 008549 sqlite_int64 rowid = 0; 008550 Mem **apArg; 008551 Mem *pX; 008552 008553 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 008554 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 008555 ); 008556 assert( p->readOnly==0 ); 008557 if( db->mallocFailed ) goto no_mem; 008558 sqlite3VdbeIncrWriteCounter(p, 0); 008559 pVtab = pOp->p4.pVtab->pVtab; 008560 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008561 rc = SQLITE_LOCKED; 008562 goto abort_due_to_error; 008563 } 008564 pModule = pVtab->pModule; 008565 nArg = pOp->p2; 008566 assert( pOp->p4type==P4_VTAB ); 008567 if( ALWAYS(pModule->xUpdate) ){ 008568 u8 vtabOnConflict = db->vtabOnConflict; 008569 apArg = p->apArg; 008570 pX = &aMem[pOp->p3]; 008571 for(i=0; i<nArg; i++){ 008572 assert( memIsValid(pX) ); 008573 memAboutToChange(p, pX); 008574 apArg[i] = pX; 008575 pX++; 008576 } 008577 db->vtabOnConflict = pOp->p5; 008578 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 008579 db->vtabOnConflict = vtabOnConflict; 008580 sqlite3VtabImportErrmsg(p, pVtab); 008581 if( rc==SQLITE_OK && pOp->p1 ){ 008582 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 008583 db->lastRowid = rowid; 008584 } 008585 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 008586 if( pOp->p5==OE_Ignore ){ 008587 rc = SQLITE_OK; 008588 }else{ 008589 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 008590 } 008591 }else{ 008592 p->nChange++; 008593 } 008594 if( rc ) goto abort_due_to_error; 008595 } 008596 break; 008597 } 008598 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008599 008600 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008601 /* Opcode: Pagecount P1 P2 * * * 008602 ** 008603 ** Write the current number of pages in database P1 to memory cell P2. 008604 */ 008605 case OP_Pagecount: { /* out2 */ 008606 pOut = out2Prerelease(p, pOp); 008607 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 008608 break; 008609 } 008610 #endif 008611 008612 008613 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008614 /* Opcode: MaxPgcnt P1 P2 P3 * * 008615 ** 008616 ** Try to set the maximum page count for database P1 to the value in P3. 008617 ** Do not let the maximum page count fall below the current page count and 008618 ** do not change the maximum page count value if P3==0. 008619 ** 008620 ** Store the maximum page count after the change in register P2. 008621 */ 008622 case OP_MaxPgcnt: { /* out2 */ 008623 unsigned int newMax; 008624 Btree *pBt; 008625 008626 pOut = out2Prerelease(p, pOp); 008627 pBt = db->aDb[pOp->p1].pBt; 008628 newMax = 0; 008629 if( pOp->p3 ){ 008630 newMax = sqlite3BtreeLastPage(pBt); 008631 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 008632 } 008633 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 008634 break; 008635 } 008636 #endif 008637 008638 /* Opcode: Function P1 P2 P3 P4 * 008639 ** Synopsis: r[P3]=func(r[P2@NP]) 008640 ** 008641 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008642 ** contains a pointer to the function to be run) with arguments taken 008643 ** from register P2 and successors. The number of arguments is in 008644 ** the sqlite3_context object that P4 points to. 008645 ** The result of the function is stored 008646 ** in register P3. Register P3 must not be one of the function inputs. 008647 ** 008648 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008649 ** function was determined to be constant at compile time. If the first 008650 ** argument was constant then bit 0 of P1 is set. This is used to determine 008651 ** whether meta data associated with a user function argument using the 008652 ** sqlite3_set_auxdata() API may be safely retained until the next 008653 ** invocation of this opcode. 008654 ** 008655 ** See also: AggStep, AggFinal, PureFunc 008656 */ 008657 /* Opcode: PureFunc P1 P2 P3 P4 * 008658 ** Synopsis: r[P3]=func(r[P2@NP]) 008659 ** 008660 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008661 ** contains a pointer to the function to be run) with arguments taken 008662 ** from register P2 and successors. The number of arguments is in 008663 ** the sqlite3_context object that P4 points to. 008664 ** The result of the function is stored 008665 ** in register P3. Register P3 must not be one of the function inputs. 008666 ** 008667 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008668 ** function was determined to be constant at compile time. If the first 008669 ** argument was constant then bit 0 of P1 is set. This is used to determine 008670 ** whether meta data associated with a user function argument using the 008671 ** sqlite3_set_auxdata() API may be safely retained until the next 008672 ** invocation of this opcode. 008673 ** 008674 ** This opcode works exactly like OP_Function. The only difference is in 008675 ** its name. This opcode is used in places where the function must be 008676 ** purely non-deterministic. Some built-in date/time functions can be 008677 ** either deterministic of non-deterministic, depending on their arguments. 008678 ** When those function are used in a non-deterministic way, they will check 008679 ** to see if they were called using OP_PureFunc instead of OP_Function, and 008680 ** if they were, they throw an error. 008681 ** 008682 ** See also: AggStep, AggFinal, Function 008683 */ 008684 case OP_PureFunc: /* group */ 008685 case OP_Function: { /* group */ 008686 int i; 008687 sqlite3_context *pCtx; 008688 008689 assert( pOp->p4type==P4_FUNCCTX ); 008690 pCtx = pOp->p4.pCtx; 008691 008692 /* If this function is inside of a trigger, the register array in aMem[] 008693 ** might change from one evaluation to the next. The next block of code 008694 ** checks to see if the register array has changed, and if so it 008695 ** reinitializes the relevant parts of the sqlite3_context object */ 008696 pOut = &aMem[pOp->p3]; 008697 if( pCtx->pOut != pOut ){ 008698 pCtx->pVdbe = p; 008699 pCtx->pOut = pOut; 008700 pCtx->enc = encoding; 008701 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 008702 } 008703 assert( pCtx->pVdbe==p ); 008704 008705 memAboutToChange(p, pOut); 008706 #ifdef SQLITE_DEBUG 008707 for(i=0; i<pCtx->argc; i++){ 008708 assert( memIsValid(pCtx->argv[i]) ); 008709 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 008710 } 008711 #endif 008712 MemSetTypeFlag(pOut, MEM_Null); 008713 assert( pCtx->isError==0 ); 008714 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 008715 008716 /* If the function returned an error, throw an exception */ 008717 if( pCtx->isError ){ 008718 if( pCtx->isError>0 ){ 008719 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 008720 rc = pCtx->isError; 008721 } 008722 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 008723 pCtx->isError = 0; 008724 if( rc ) goto abort_due_to_error; 008725 } 008726 008727 assert( (pOut->flags&MEM_Str)==0 008728 || pOut->enc==encoding 008729 || db->mallocFailed ); 008730 assert( !sqlite3VdbeMemTooBig(pOut) ); 008731 008732 REGISTER_TRACE(pOp->p3, pOut); 008733 UPDATE_MAX_BLOBSIZE(pOut); 008734 break; 008735 } 008736 008737 /* Opcode: ClrSubtype P1 * * * * 008738 ** Synopsis: r[P1].subtype = 0 008739 ** 008740 ** Clear the subtype from register P1. 008741 */ 008742 case OP_ClrSubtype: { /* in1 */ 008743 pIn1 = &aMem[pOp->p1]; 008744 pIn1->flags &= ~MEM_Subtype; 008745 break; 008746 } 008747 008748 /* Opcode: GetSubtype P1 P2 * * * 008749 ** Synopsis: r[P2] = r[P1].subtype 008750 ** 008751 ** Extract the subtype value from register P1 and write that subtype 008752 ** into register P2. If P1 has no subtype, then P1 gets a NULL. 008753 */ 008754 case OP_GetSubtype: { /* in1 out2 */ 008755 pIn1 = &aMem[pOp->p1]; 008756 pOut = &aMem[pOp->p2]; 008757 if( pIn1->flags & MEM_Subtype ){ 008758 sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype); 008759 }else{ 008760 sqlite3VdbeMemSetNull(pOut); 008761 } 008762 break; 008763 } 008764 008765 /* Opcode: SetSubtype P1 P2 * * * 008766 ** Synopsis: r[P2].subtype = r[P1] 008767 ** 008768 ** Set the subtype value of register P2 to the integer from register P1. 008769 ** If P1 is NULL, clear the subtype from p2. 008770 */ 008771 case OP_SetSubtype: { /* in1 out2 */ 008772 pIn1 = &aMem[pOp->p1]; 008773 pOut = &aMem[pOp->p2]; 008774 if( pIn1->flags & MEM_Null ){ 008775 pOut->flags &= ~MEM_Subtype; 008776 }else{ 008777 assert( pIn1->flags & MEM_Int ); 008778 pOut->flags |= MEM_Subtype; 008779 pOut->eSubtype = (u8)(pIn1->u.i & 0xff); 008780 } 008781 break; 008782 } 008783 008784 /* Opcode: FilterAdd P1 * P3 P4 * 008785 ** Synopsis: filter(P1) += key(P3@P4) 008786 ** 008787 ** Compute a hash on the P4 registers starting with r[P3] and 008788 ** add that hash to the bloom filter contained in r[P1]. 008789 */ 008790 case OP_FilterAdd: { 008791 u64 h; 008792 008793 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008794 pIn1 = &aMem[pOp->p1]; 008795 assert( pIn1->flags & MEM_Blob ); 008796 assert( pIn1->n>0 ); 008797 h = filterHash(aMem, pOp); 008798 #ifdef SQLITE_DEBUG 008799 if( db->flags&SQLITE_VdbeTrace ){ 008800 int ii; 008801 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008802 registerTrace(ii, &aMem[ii]); 008803 } 008804 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008805 } 008806 #endif 008807 h %= (pIn1->n*8); 008808 pIn1->z[h/8] |= 1<<(h&7); 008809 break; 008810 } 008811 008812 /* Opcode: Filter P1 P2 P3 P4 * 008813 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 008814 ** 008815 ** Compute a hash on the key contained in the P4 registers starting 008816 ** with r[P3]. Check to see if that hash is found in the 008817 ** bloom filter hosted by register P1. If it is not present then 008818 ** maybe jump to P2. Otherwise fall through. 008819 ** 008820 ** False negatives are harmless. It is always safe to fall through, 008821 ** even if the value is in the bloom filter. A false negative causes 008822 ** more CPU cycles to be used, but it should still yield the correct 008823 ** answer. However, an incorrect answer may well arise from a 008824 ** false positive - if the jump is taken when it should fall through. 008825 */ 008826 case OP_Filter: { /* jump */ 008827 u64 h; 008828 008829 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008830 pIn1 = &aMem[pOp->p1]; 008831 assert( (pIn1->flags & MEM_Blob)!=0 ); 008832 assert( pIn1->n >= 1 ); 008833 h = filterHash(aMem, pOp); 008834 #ifdef SQLITE_DEBUG 008835 if( db->flags&SQLITE_VdbeTrace ){ 008836 int ii; 008837 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008838 registerTrace(ii, &aMem[ii]); 008839 } 008840 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008841 } 008842 #endif 008843 h %= (pIn1->n*8); 008844 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 008845 VdbeBranchTaken(1, 2); 008846 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 008847 goto jump_to_p2; 008848 }else{ 008849 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 008850 VdbeBranchTaken(0, 2); 008851 } 008852 break; 008853 } 008854 008855 /* Opcode: Trace P1 P2 * P4 * 008856 ** 008857 ** Write P4 on the statement trace output if statement tracing is 008858 ** enabled. 008859 ** 008860 ** Operand P1 must be 0x7fffffff and P2 must positive. 008861 */ 008862 /* Opcode: Init P1 P2 P3 P4 * 008863 ** Synopsis: Start at P2 008864 ** 008865 ** Programs contain a single instance of this opcode as the very first 008866 ** opcode. 008867 ** 008868 ** If tracing is enabled (by the sqlite3_trace()) interface, then 008869 ** the UTF-8 string contained in P4 is emitted on the trace callback. 008870 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 008871 ** 008872 ** If P2 is not zero, jump to instruction P2. 008873 ** 008874 ** Increment the value of P1 so that OP_Once opcodes will jump the 008875 ** first time they are evaluated for this run. 008876 ** 008877 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 008878 ** error is encountered. 008879 */ 008880 case OP_Trace: 008881 case OP_Init: { /* jump0 */ 008882 int i; 008883 #ifndef SQLITE_OMIT_TRACE 008884 char *zTrace; 008885 #endif 008886 008887 /* If the P4 argument is not NULL, then it must be an SQL comment string. 008888 ** The "--" string is broken up to prevent false-positives with srcck1.c. 008889 ** 008890 ** This assert() provides evidence for: 008891 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 008892 ** would have been returned by the legacy sqlite3_trace() interface by 008893 ** using the X argument when X begins with "--" and invoking 008894 ** sqlite3_expanded_sql(P) otherwise. 008895 */ 008896 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 008897 008898 /* OP_Init is always instruction 0 */ 008899 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 008900 008901 #ifndef SQLITE_OMIT_TRACE 008902 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 008903 && p->minWriteFileFormat!=254 /* tag-20220401a */ 008904 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008905 ){ 008906 #ifndef SQLITE_OMIT_DEPRECATED 008907 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 008908 char *z = sqlite3VdbeExpandSql(p, zTrace); 008909 db->trace.xLegacy(db->pTraceArg, z); 008910 sqlite3_free(z); 008911 }else 008912 #endif 008913 if( db->nVdbeExec>1 ){ 008914 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 008915 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 008916 sqlite3DbFree(db, z); 008917 }else{ 008918 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 008919 } 008920 } 008921 #ifdef SQLITE_USE_FCNTL_TRACE 008922 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 008923 if( zTrace ){ 008924 int j; 008925 for(j=0; j<db->nDb; j++){ 008926 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 008927 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 008928 } 008929 } 008930 #endif /* SQLITE_USE_FCNTL_TRACE */ 008931 #ifdef SQLITE_DEBUG 008932 if( (db->flags & SQLITE_SqlTrace)!=0 008933 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008934 ){ 008935 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 008936 } 008937 #endif /* SQLITE_DEBUG */ 008938 #endif /* SQLITE_OMIT_TRACE */ 008939 assert( pOp->p2>0 ); 008940 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 008941 if( pOp->opcode==OP_Trace ) break; 008942 for(i=1; i<p->nOp; i++){ 008943 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 008944 } 008945 pOp->p1 = 0; 008946 } 008947 pOp->p1++; 008948 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 008949 goto jump_to_p2; 008950 } 008951 008952 #ifdef SQLITE_ENABLE_CURSOR_HINTS 008953 /* Opcode: CursorHint P1 * * P4 * 008954 ** 008955 ** Provide a hint to cursor P1 that it only needs to return rows that 008956 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 008957 ** to values currently held in registers. TK_COLUMN terms in the P4 008958 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 008959 */ 008960 case OP_CursorHint: { 008961 VdbeCursor *pC; 008962 008963 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008964 assert( pOp->p4type==P4_EXPR ); 008965 pC = p->apCsr[pOp->p1]; 008966 if( pC ){ 008967 assert( pC->eCurType==CURTYPE_BTREE ); 008968 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 008969 pOp->p4.pExpr, aMem); 008970 } 008971 break; 008972 } 008973 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 008974 008975 #ifdef SQLITE_DEBUG 008976 /* Opcode: Abortable * * * * * 008977 ** 008978 ** Verify that an Abort can happen. Assert if an Abort at this point 008979 ** might cause database corruption. This opcode only appears in debugging 008980 ** builds. 008981 ** 008982 ** An Abort is safe if either there have been no writes, or if there is 008983 ** an active statement journal. 008984 */ 008985 case OP_Abortable: { 008986 sqlite3VdbeAssertAbortable(p); 008987 break; 008988 } 008989 #endif 008990 008991 #ifdef SQLITE_DEBUG 008992 /* Opcode: ReleaseReg P1 P2 P3 * P5 008993 ** Synopsis: release r[P1@P2] mask P3 008994 ** 008995 ** Release registers from service. Any content that was in the 008996 ** the registers is unreliable after this opcode completes. 008997 ** 008998 ** The registers released will be the P2 registers starting at P1, 008999 ** except if bit ii of P3 set, then do not release register P1+ii. 009000 ** In other words, P3 is a mask of registers to preserve. 009001 ** 009002 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 009003 ** that if the content of the released register was set using OP_SCopy, 009004 ** a change to the value of the source register for the OP_SCopy will no longer 009005 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 009006 ** 009007 ** If P5 is set, then all released registers have their type set 009008 ** to MEM_Undefined so that any subsequent attempt to read the released 009009 ** register (before it is reinitialized) will generate an assertion fault. 009010 ** 009011 ** P5 ought to be set on every call to this opcode. 009012 ** However, there are places in the code generator will release registers 009013 ** before their are used, under the (valid) assumption that the registers 009014 ** will not be reallocated for some other purpose before they are used and 009015 ** hence are safe to release. 009016 ** 009017 ** This opcode is only available in testing and debugging builds. It is 009018 ** not generated for release builds. The purpose of this opcode is to help 009019 ** validate the generated bytecode. This opcode does not actually contribute 009020 ** to computing an answer. 009021 */ 009022 case OP_ReleaseReg: { 009023 Mem *pMem; 009024 int i; 009025 u32 constMask; 009026 assert( pOp->p1>0 ); 009027 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 009028 pMem = &aMem[pOp->p1]; 009029 constMask = pOp->p3; 009030 for(i=0; i<pOp->p2; i++, pMem++){ 009031 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 009032 pMem->pScopyFrom = 0; 009033 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 009034 } 009035 } 009036 break; 009037 } 009038 #endif 009039 009040 /* Opcode: Noop * * * * * 009041 ** 009042 ** Do nothing. Continue downward to the next opcode. 009043 */ 009044 /* Opcode: Explain P1 P2 P3 P4 * 009045 ** 009046 ** This is the same as OP_Noop during normal query execution. The 009047 ** purpose of this opcode is to hold information about the query 009048 ** plan for the purpose of EXPLAIN QUERY PLAN output. 009049 ** 009050 ** The P4 value is human-readable text that describes the query plan 009051 ** element. Something like "SCAN t1" or "SEARCH t2 USING INDEX t2x1". 009052 ** 009053 ** The P1 value is the ID of the current element and P2 is the parent 009054 ** element for the case of nested query plan elements. If P2 is zero 009055 ** then this element is a top-level element. 009056 ** 009057 ** For loop elements, P3 is the estimated code of each invocation of this 009058 ** element. 009059 ** 009060 ** As with all opcodes, the meanings of the parameters for OP_Explain 009061 ** are subject to change from one release to the next. Applications 009062 ** should not attempt to interpret or use any of the information 009063 ** contained in the OP_Explain opcode. The information provided by this 009064 ** opcode is intended for testing and debugging use only. 009065 */ 009066 default: { /* This is really OP_Noop, OP_Explain */ 009067 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 009068 009069 break; 009070 } 009071 009072 /***************************************************************************** 009073 ** The cases of the switch statement above this line should all be indented 009074 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 009075 ** readability. From this point on down, the normal indentation rules are 009076 ** restored. 009077 *****************************************************************************/ 009078 } 009079 009080 #if defined(VDBE_PROFILE) 009081 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009082 pnCycle = 0; 009083 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009084 if( pnCycle ){ 009085 *pnCycle += sqlite3Hwtime(); 009086 pnCycle = 0; 009087 } 009088 #endif 009089 009090 /* The following code adds nothing to the actual functionality 009091 ** of the program. It is only here for testing and debugging. 009092 ** On the other hand, it does burn CPU cycles every time through 009093 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 009094 */ 009095 #ifndef NDEBUG 009096 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 009097 009098 #ifdef SQLITE_DEBUG 009099 if( db->flags & SQLITE_VdbeTrace ){ 009100 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 009101 if( rc!=0 ) printf("rc=%d\n",rc); 009102 if( opProperty & (OPFLG_OUT2) ){ 009103 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 009104 } 009105 if( opProperty & OPFLG_OUT3 ){ 009106 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 009107 } 009108 if( opProperty==0xff ){ 009109 /* Never happens. This code exists to avoid a harmless linkage 009110 ** warning about sqlite3VdbeRegisterDump() being defined but not 009111 ** used. */ 009112 sqlite3VdbeRegisterDump(p); 009113 } 009114 } 009115 #endif /* SQLITE_DEBUG */ 009116 #endif /* NDEBUG */ 009117 } /* The end of the for(;;) loop the loops through opcodes */ 009118 009119 /* If we reach this point, it means that execution is finished with 009120 ** an error of some kind. 009121 */ 009122 abort_due_to_error: 009123 if( db->mallocFailed ){ 009124 rc = SQLITE_NOMEM_BKPT; 009125 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 009126 rc = SQLITE_CORRUPT_BKPT; 009127 } 009128 assert( rc ); 009129 #ifdef SQLITE_DEBUG 009130 if( db->flags & SQLITE_VdbeTrace ){ 009131 const char *zTrace = p->zSql; 009132 if( zTrace==0 ){ 009133 if( aOp[0].opcode==OP_Trace ){ 009134 zTrace = aOp[0].p4.z; 009135 } 009136 if( zTrace==0 ) zTrace = "???"; 009137 } 009138 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 009139 } 009140 #endif 009141 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 009142 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 009143 } 009144 p->rc = rc; 009145 sqlite3SystemError(db, rc); 009146 testcase( sqlite3GlobalConfig.xLog!=0 ); 009147 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 009148 (int)(pOp - aOp), p->zSql, p->zErrMsg); 009149 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 009150 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 009151 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 009152 db->flags |= SQLITE_CorruptRdOnly; 009153 } 009154 rc = SQLITE_ERROR; 009155 if( resetSchemaOnFault>0 ){ 009156 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 009157 } 009158 009159 /* This is the only way out of this procedure. We have to 009160 ** release the mutexes on btrees that were acquired at the 009161 ** top. */ 009162 vdbe_return: 009163 #if defined(VDBE_PROFILE) 009164 if( pnCycle ){ 009165 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009166 pnCycle = 0; 009167 } 009168 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009169 if( pnCycle ){ 009170 *pnCycle += sqlite3Hwtime(); 009171 pnCycle = 0; 009172 } 009173 #endif 009174 009175 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 009176 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 009177 nProgressLimit += db->nProgressOps; 009178 if( db->xProgress(db->pProgressArg) ){ 009179 nProgressLimit = LARGEST_UINT64; 009180 rc = SQLITE_INTERRUPT; 009181 goto abort_due_to_error; 009182 } 009183 } 009184 #endif 009185 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 009186 if( DbMaskNonZero(p->lockMask) ){ 009187 sqlite3VdbeLeave(p); 009188 } 009189 assert( rc!=SQLITE_OK || nExtraDelete==0 009190 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 009191 ); 009192 return rc; 009193 009194 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 009195 ** is encountered. 009196 */ 009197 too_big: 009198 sqlite3VdbeError(p, "string or blob too big"); 009199 rc = SQLITE_TOOBIG; 009200 goto abort_due_to_error; 009201 009202 /* Jump to here if a malloc() fails. 009203 */ 009204 no_mem: 009205 sqlite3OomFault(db); 009206 sqlite3VdbeError(p, "out of memory"); 009207 rc = SQLITE_NOMEM_BKPT; 009208 goto abort_due_to_error; 009209 009210 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 009211 ** flag. 009212 */ 009213 abort_due_to_interrupt: 009214 assert( AtomicLoad(&db->u1.isInterrupted) ); 009215 rc = SQLITE_INTERRUPT; 009216 goto abort_due_to_error; 009217 }