000001 /* 000002 ** 2010 February 1 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains the implementation of a write-ahead log (WAL) used in 000014 ** "journal_mode=WAL" mode. 000015 ** 000016 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 000017 ** 000018 ** A WAL file consists of a header followed by zero or more "frames". 000019 ** Each frame records the revised content of a single page from the 000020 ** database file. All changes to the database are recorded by writing 000021 ** frames into the WAL. Transactions commit when a frame is written that 000022 ** contains a commit marker. A single WAL can and usually does record 000023 ** multiple transactions. Periodically, the content of the WAL is 000024 ** transferred back into the database file in an operation called a 000025 ** "checkpoint". 000026 ** 000027 ** A single WAL file can be used multiple times. In other words, the 000028 ** WAL can fill up with frames and then be checkpointed and then new 000029 ** frames can overwrite the old ones. A WAL always grows from beginning 000030 ** toward the end. Checksums and counters attached to each frame are 000031 ** used to determine which frames within the WAL are valid and which 000032 ** are leftovers from prior checkpoints. 000033 ** 000034 ** The WAL header is 32 bytes in size and consists of the following eight 000035 ** big-endian 32-bit unsigned integer values: 000036 ** 000037 ** 0: Magic number. 0x377f0682 or 0x377f0683 000038 ** 4: File format version. Currently 3007000 000039 ** 8: Database page size. Example: 1024 000040 ** 12: Checkpoint sequence number 000041 ** 16: Salt-1, random integer incremented with each checkpoint 000042 ** 20: Salt-2, a different random integer changing with each ckpt 000043 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 000044 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 000045 ** 000046 ** Immediately following the wal-header are zero or more frames. Each 000047 ** frame consists of a 24-byte frame-header followed by <page-size> bytes 000048 ** of page data. The frame-header is six big-endian 32-bit unsigned 000049 ** integer values, as follows: 000050 ** 000051 ** 0: Page number. 000052 ** 4: For commit records, the size of the database image in pages 000053 ** after the commit. For all other records, zero. 000054 ** 8: Salt-1 (copied from the header) 000055 ** 12: Salt-2 (copied from the header) 000056 ** 16: Checksum-1. 000057 ** 20: Checksum-2. 000058 ** 000059 ** A frame is considered valid if and only if the following conditions are 000060 ** true: 000061 ** 000062 ** (1) The salt-1 and salt-2 values in the frame-header match 000063 ** salt values in the wal-header 000064 ** 000065 ** (2) The checksum values in the final 8 bytes of the frame-header 000066 ** exactly match the checksum computed consecutively on the 000067 ** WAL header and the first 8 bytes and the content of all frames 000068 ** up to and including the current frame. 000069 ** 000070 ** The checksum is computed using 32-bit big-endian integers if the 000071 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 000072 ** is computed using little-endian if the magic number is 0x377f0682. 000073 ** The checksum values are always stored in the frame header in a 000074 ** big-endian format regardless of which byte order is used to compute 000075 ** the checksum. The checksum is computed by interpreting the input as 000076 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 000077 ** algorithm used for the checksum is as follows: 000078 ** 000079 ** for i from 0 to n-1 step 2: 000080 ** s0 += x[i] + s1; 000081 ** s1 += x[i+1] + s0; 000082 ** endfor 000083 ** 000084 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 000085 ** in reverse order (the largest fibonacci weight occurs on the first element 000086 ** of the sequence being summed.) The s1 value spans all 32-bit 000087 ** terms of the sequence whereas s0 omits the final term. 000088 ** 000089 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 000090 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 000091 ** The VFS.xSync operations serve as write barriers - all writes launched 000092 ** before the xSync must complete before any write that launches after the 000093 ** xSync begins. 000094 ** 000095 ** After each checkpoint, the salt-1 value is incremented and the salt-2 000096 ** value is randomized. This prevents old and new frames in the WAL from 000097 ** being considered valid at the same time and being checkpointing together 000098 ** following a crash. 000099 ** 000100 ** READER ALGORITHM 000101 ** 000102 ** To read a page from the database (call it page number P), a reader 000103 ** first checks the WAL to see if it contains page P. If so, then the 000104 ** last valid instance of page P that is a followed by a commit frame 000105 ** or is a commit frame itself becomes the value read. If the WAL 000106 ** contains no copies of page P that are valid and which are a commit 000107 ** frame or are followed by a commit frame, then page P is read from 000108 ** the database file. 000109 ** 000110 ** To start a read transaction, the reader records the index of the last 000111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 000112 ** for all subsequent read operations. New transactions can be appended 000113 ** to the WAL, but as long as the reader uses its original mxFrame value 000114 ** and ignores the newly appended content, it will see a consistent snapshot 000115 ** of the database from a single point in time. This technique allows 000116 ** multiple concurrent readers to view different versions of the database 000117 ** content simultaneously. 000118 ** 000119 ** The reader algorithm in the previous paragraphs works correctly, but 000120 ** because frames for page P can appear anywhere within the WAL, the 000121 ** reader has to scan the entire WAL looking for page P frames. If the 000122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 000123 ** and read performance suffers. To overcome this problem, a separate 000124 ** data structure called the wal-index is maintained to expedite the 000125 ** search for frames of a particular page. 000126 ** 000127 ** WAL-INDEX FORMAT 000128 ** 000129 ** Conceptually, the wal-index is shared memory, though VFS implementations 000130 ** might choose to implement the wal-index using a mmapped file. Because 000131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 000132 ** on a network filesystem. All users of the database must be able to 000133 ** share memory. 000134 ** 000135 ** In the default unix and windows implementation, the wal-index is a mmapped 000136 ** file whose name is the database name with a "-shm" suffix added. For that 000137 ** reason, the wal-index is sometimes called the "shm" file. 000138 ** 000139 ** The wal-index is transient. After a crash, the wal-index can (and should 000140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 000141 ** to either truncate or zero the header of the wal-index when the last 000142 ** connection to it closes. Because the wal-index is transient, it can 000143 ** use an architecture-specific format; it does not have to be cross-platform. 000144 ** Hence, unlike the database and WAL file formats which store all values 000145 ** as big endian, the wal-index can store multi-byte values in the native 000146 ** byte order of the host computer. 000147 ** 000148 ** The purpose of the wal-index is to answer this question quickly: Given 000149 ** a page number P and a maximum frame index M, return the index of the 000150 ** last frame in the wal before frame M for page P in the WAL, or return 000151 ** NULL if there are no frames for page P in the WAL prior to M. 000152 ** 000153 ** The wal-index consists of a header region, followed by an one or 000154 ** more index blocks. 000155 ** 000156 ** The wal-index header contains the total number of frames within the WAL 000157 ** in the mxFrame field. 000158 ** 000159 ** Each index block except for the first contains information on 000160 ** HASHTABLE_NPAGE frames. The first index block contains information on 000161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 000162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 000163 ** first index block are the same size as all other index blocks in the 000164 ** wal-index. The values are: 000165 ** 000166 ** HASHTABLE_NPAGE 4096 000167 ** HASHTABLE_NPAGE_ONE 4062 000168 ** 000169 ** Each index block contains two sections, a page-mapping that contains the 000170 ** database page number associated with each wal frame, and a hash-table 000171 ** that allows readers to query an index block for a specific page number. 000172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 000173 ** for the first index block) 32-bit page numbers. The first entry in the 000174 ** first index-block contains the database page number corresponding to the 000175 ** first frame in the WAL file. The first entry in the second index block 000176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 000177 ** the log, and so on. 000178 ** 000179 ** The last index block in a wal-index usually contains less than the full 000180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 000181 ** depending on the contents of the WAL file. This does not change the 000182 ** allocated size of the page-mapping array - the page-mapping array merely 000183 ** contains unused entries. 000184 ** 000185 ** Even without using the hash table, the last frame for page P 000186 ** can be found by scanning the page-mapping sections of each index block 000187 ** starting with the last index block and moving toward the first, and 000188 ** within each index block, starting at the end and moving toward the 000189 ** beginning. The first entry that equals P corresponds to the frame 000190 ** holding the content for that page. 000191 ** 000192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 000193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 000194 ** hash table for each page number in the mapping section, so the hash 000195 ** table is never more than half full. The expected number of collisions 000196 ** prior to finding a match is 1. Each entry of the hash table is an 000197 ** 1-based index of an entry in the mapping section of the same 000198 ** index block. Let K be the 1-based index of the largest entry in 000199 ** the mapping section. (For index blocks other than the last, K will 000200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 000201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 000202 ** contain a value of 0. 000203 ** 000204 ** To look for page P in the hash table, first compute a hash iKey on 000205 ** P as follows: 000206 ** 000207 ** iKey = (P * 383) % HASHTABLE_NSLOT 000208 ** 000209 ** Then start scanning entries of the hash table, starting with iKey 000210 ** (wrapping around to the beginning when the end of the hash table is 000211 ** reached) until an unused hash slot is found. Let the first unused slot 000212 ** be at index iUnused. (iUnused might be less than iKey if there was 000213 ** wrap-around.) Because the hash table is never more than half full, 000214 ** the search is guaranteed to eventually hit an unused entry. Let 000215 ** iMax be the value between iKey and iUnused, closest to iUnused, 000216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 000217 ** no hash slot such that aHash[i]==p) then page P is not in the 000218 ** current index block. Otherwise the iMax-th mapping entry of the 000219 ** current index block corresponds to the last entry that references 000220 ** page P. 000221 ** 000222 ** A hash search begins with the last index block and moves toward the 000223 ** first index block, looking for entries corresponding to page P. On 000224 ** average, only two or three slots in each index block need to be 000225 ** examined in order to either find the last entry for page P, or to 000226 ** establish that no such entry exists in the block. Each index block 000227 ** holds over 4000 entries. So two or three index blocks are sufficient 000228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 000229 ** comparisons (on average) suffice to either locate a frame in the 000230 ** WAL or to establish that the frame does not exist in the WAL. This 000231 ** is much faster than scanning the entire 10MB WAL. 000232 ** 000233 ** Note that entries are added in order of increasing K. Hence, one 000234 ** reader might be using some value K0 and a second reader that started 000235 ** at a later time (after additional transactions were added to the WAL 000236 ** and to the wal-index) might be using a different value K1, where K1>K0. 000237 ** Both readers can use the same hash table and mapping section to get 000238 ** the correct result. There may be entries in the hash table with 000239 ** K>K0 but to the first reader, those entries will appear to be unused 000240 ** slots in the hash table and so the first reader will get an answer as 000241 ** if no values greater than K0 had ever been inserted into the hash table 000242 ** in the first place - which is what reader one wants. Meanwhile, the 000243 ** second reader using K1 will see additional values that were inserted 000244 ** later, which is exactly what reader two wants. 000245 ** 000246 ** When a rollback occurs, the value of K is decreased. Hash table entries 000247 ** that correspond to frames greater than the new K value are removed 000248 ** from the hash table at this point. 000249 */ 000250 #ifndef SQLITE_OMIT_WAL 000251 000252 #include "wal.h" 000253 000254 /* 000255 ** Trace output macros 000256 */ 000257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 000258 int sqlite3WalTrace = 0; 000259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 000260 #else 000261 # define WALTRACE(X) 000262 #endif 000263 000264 /* 000265 ** The maximum (and only) versions of the wal and wal-index formats 000266 ** that may be interpreted by this version of SQLite. 000267 ** 000268 ** If a client begins recovering a WAL file and finds that (a) the checksum 000269 ** values in the wal-header are correct and (b) the version field is not 000270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 000271 ** 000272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 000273 ** checksum test is successful) and finds that the version field is not 000274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 000275 ** returns SQLITE_CANTOPEN. 000276 */ 000277 #define WAL_MAX_VERSION 3007000 000278 #define WALINDEX_MAX_VERSION 3007000 000279 000280 /* 000281 ** Index numbers for various locking bytes. WAL_NREADER is the number 000282 ** of available reader locks and should be at least 3. The default 000283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 000284 ** 000285 ** Technically, the various VFSes are free to implement these locks however 000286 ** they see fit. However, compatibility is encouraged so that VFSes can 000287 ** interoperate. The standard implementation used on both unix and windows 000288 ** is for the index number to indicate a byte offset into the 000289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 000290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 000291 ** should be 120) is the location in the shm file for the first locking 000292 ** byte. 000293 */ 000294 #define WAL_WRITE_LOCK 0 000295 #define WAL_ALL_BUT_WRITE 1 000296 #define WAL_CKPT_LOCK 1 000297 #define WAL_RECOVER_LOCK 2 000298 #define WAL_READ_LOCK(I) (3+(I)) 000299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 000300 000301 000302 /* Object declarations */ 000303 typedef struct WalIndexHdr WalIndexHdr; 000304 typedef struct WalIterator WalIterator; 000305 typedef struct WalCkptInfo WalCkptInfo; 000306 000307 000308 /* 000309 ** The following object holds a copy of the wal-index header content. 000310 ** 000311 ** The actual header in the wal-index consists of two copies of this 000312 ** object followed by one instance of the WalCkptInfo object. 000313 ** For all versions of SQLite through 3.10.0 and probably beyond, 000314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 000315 ** the total header size is 136 bytes. 000316 ** 000317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 000318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 000319 ** added in 3.7.1 when support for 64K pages was added. 000320 */ 000321 struct WalIndexHdr { 000322 u32 iVersion; /* Wal-index version */ 000323 u32 unused; /* Unused (padding) field */ 000324 u32 iChange; /* Counter incremented each transaction */ 000325 u8 isInit; /* 1 when initialized */ 000326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 000327 u16 szPage; /* Database page size in bytes. 1==64K */ 000328 u32 mxFrame; /* Index of last valid frame in the WAL */ 000329 u32 nPage; /* Size of database in pages */ 000330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 000331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 000332 u32 aCksum[2]; /* Checksum over all prior fields */ 000333 }; 000334 000335 /* 000336 ** A copy of the following object occurs in the wal-index immediately 000337 ** following the second copy of the WalIndexHdr. This object stores 000338 ** information used by checkpoint. 000339 ** 000340 ** nBackfill is the number of frames in the WAL that have been written 000341 ** back into the database. (We call the act of moving content from WAL to 000342 ** database "backfilling".) The nBackfill number is never greater than 000343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 000344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 000345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 000346 ** mxFrame back to zero when the WAL is reset. 000347 ** 000348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 000349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 000350 ** the nBackfillAttempted is set before any backfilling is done and the 000351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 000352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 000353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 000354 ** 000355 ** The aLock[] field is a set of bytes used for locking. These bytes should 000356 ** never be read or written. 000357 ** 000358 ** There is one entry in aReadMark[] for each reader lock. If a reader 000359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 000360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 000361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 000362 ** a special case; its value is never used and it exists as a place-holder 000363 ** to avoid having to offset aReadMark[] indexes by one. Readers holding 000364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 000365 ** directly from the database. 000366 ** 000367 ** The value of aReadMark[K] may only be changed by a thread that 000368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 000369 ** aReadMark[K] cannot changed while there is a reader is using that mark 000370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 000371 ** 000372 ** The checkpointer may only transfer frames from WAL to database where 000373 ** the frame numbers are less than or equal to every aReadMark[] that is 000374 ** in use (that is, every aReadMark[j] for which there is a corresponding 000375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 000376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 000377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 000378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 000379 ** in the WAL has been backfilled into the database) then new readers 000380 ** will choose aReadMark[0] which has value 0 and hence such reader will 000381 ** get all their all content directly from the database file and ignore 000382 ** the WAL. 000383 ** 000384 ** Writers normally append new frames to the end of the WAL. However, 000385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 000386 ** written back into the database) and if no readers are using the WAL 000387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 000388 ** the writer will first "reset" the WAL back to the beginning and start 000389 ** writing new content beginning at frame 1. 000390 ** 000391 ** We assume that 32-bit loads are atomic and so no locks are needed in 000392 ** order to read from any aReadMark[] entries. 000393 */ 000394 struct WalCkptInfo { 000395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 000396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 000397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 000398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 000399 u32 notUsed0; /* Available for future enhancements */ 000400 }; 000401 #define READMARK_NOT_USED 0xffffffff 000402 000403 /* 000404 ** This is a schematic view of the complete 136-byte header of the 000405 ** wal-index file (also known as the -shm file): 000406 ** 000407 ** +-----------------------------+ 000408 ** 0: | iVersion | \ 000409 ** +-----------------------------+ | 000410 ** 4: | (unused padding) | | 000411 ** +-----------------------------+ | 000412 ** 8: | iChange | | 000413 ** +-------+-------+-------------+ | 000414 ** 12: | bInit | bBig | szPage | | 000415 ** +-------+-------+-------------+ | 000416 ** 16: | mxFrame | | First copy of the 000417 ** +-----------------------------+ | WalIndexHdr object 000418 ** 20: | nPage | | 000419 ** +-----------------------------+ | 000420 ** 24: | aFrameCksum | | 000421 ** | | | 000422 ** +-----------------------------+ | 000423 ** 32: | aSalt | | 000424 ** | | | 000425 ** +-----------------------------+ | 000426 ** 40: | aCksum | | 000427 ** | | / 000428 ** +-----------------------------+ 000429 ** 48: | iVersion | \ 000430 ** +-----------------------------+ | 000431 ** 52: | (unused padding) | | 000432 ** +-----------------------------+ | 000433 ** 56: | iChange | | 000434 ** +-------+-------+-------------+ | 000435 ** 60: | bInit | bBig | szPage | | 000436 ** +-------+-------+-------------+ | Second copy of the 000437 ** 64: | mxFrame | | WalIndexHdr 000438 ** +-----------------------------+ | 000439 ** 68: | nPage | | 000440 ** +-----------------------------+ | 000441 ** 72: | aFrameCksum | | 000442 ** | | | 000443 ** +-----------------------------+ | 000444 ** 80: | aSalt | | 000445 ** | | | 000446 ** +-----------------------------+ | 000447 ** 88: | aCksum | | 000448 ** | | / 000449 ** +-----------------------------+ 000450 ** 96: | nBackfill | 000451 ** +-----------------------------+ 000452 ** 100: | 5 read marks | 000453 ** | | 000454 ** | | 000455 ** | | 000456 ** | | 000457 ** +-------+-------+------+------+ 000458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \ 000459 ** +-------+-------+------+------+ ) 8 lock bytes 000460 ** | Read1 | Read2 | Rd3 | Rd4 | / 000461 ** +-------+-------+------+------+ 000462 ** 128: | nBackfillAttempted | 000463 ** +-----------------------------+ 000464 ** 132: | (unused padding) | 000465 ** +-----------------------------+ 000466 */ 000467 000468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 000469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 000470 ** only support mandatory file-locks, we do not read or write data 000471 ** from the region of the file on which locks are applied. 000472 */ 000473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 000474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 000475 000476 /* Size of header before each frame in wal */ 000477 #define WAL_FRAME_HDRSIZE 24 000478 000479 /* Size of write ahead log header, including checksum. */ 000480 #define WAL_HDRSIZE 32 000481 000482 /* WAL magic value. Either this value, or the same value with the least 000483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 000484 ** big-endian format in the first 4 bytes of a WAL file. 000485 ** 000486 ** If the LSB is set, then the checksums for each frame within the WAL 000487 ** file are calculated by treating all data as an array of 32-bit 000488 ** big-endian words. Otherwise, they are calculated by interpreting 000489 ** all data as 32-bit little-endian words. 000490 */ 000491 #define WAL_MAGIC 0x377f0682 000492 000493 /* 000494 ** Return the offset of frame iFrame in the write-ahead log file, 000495 ** assuming a database page size of szPage bytes. The offset returned 000496 ** is to the start of the write-ahead log frame-header. 000497 */ 000498 #define walFrameOffset(iFrame, szPage) ( \ 000499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 000500 ) 000501 000502 /* 000503 ** An open write-ahead log file is represented by an instance of the 000504 ** following object. 000505 */ 000506 struct Wal { 000507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 000508 sqlite3_file *pDbFd; /* File handle for the database file */ 000509 sqlite3_file *pWalFd; /* File handle for WAL file */ 000510 u32 iCallback; /* Value to pass to log callback (or 0) */ 000511 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 000512 int nWiData; /* Size of array apWiData */ 000513 int szFirstBlock; /* Size of first block written to WAL file */ 000514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 000515 u32 szPage; /* Database page size */ 000516 i16 readLock; /* Which read lock is being held. -1 for none */ 000517 u8 syncFlags; /* Flags to use to sync header writes */ 000518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 000519 u8 writeLock; /* True if in a write transaction */ 000520 u8 ckptLock; /* True if holding a checkpoint lock */ 000521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 000522 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 000523 u8 syncHeader; /* Fsync the WAL header if true */ 000524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 000525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 000526 WalIndexHdr hdr; /* Wal-index header for current transaction */ 000527 u32 minFrame; /* Ignore wal frames before this one */ 000528 u32 iReCksum; /* On commit, recalculate checksums from here */ 000529 const char *zWalName; /* Name of WAL file */ 000530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 000531 #ifdef SQLITE_USE_SEH 000532 u32 lockMask; /* Mask of locks held */ 000533 void *pFree; /* Pointer to sqlite3_free() if exception thrown */ 000534 u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ 000535 int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ 000536 int iSysErrno; /* System error code following exception */ 000537 #endif 000538 #ifdef SQLITE_DEBUG 000539 int nSehTry; /* Number of nested SEH_TRY{} blocks */ 000540 u8 lockError; /* True if a locking error has occurred */ 000541 #endif 000542 #ifdef SQLITE_ENABLE_SNAPSHOT 000543 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 000544 int bGetSnapshot; /* Transaction opened for sqlite3_get_snapshot() */ 000545 #endif 000546 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 000547 sqlite3 *db; 000548 #endif 000549 }; 000550 000551 /* 000552 ** Candidate values for Wal.exclusiveMode. 000553 */ 000554 #define WAL_NORMAL_MODE 0 000555 #define WAL_EXCLUSIVE_MODE 1 000556 #define WAL_HEAPMEMORY_MODE 2 000557 000558 /* 000559 ** Possible values for WAL.readOnly 000560 */ 000561 #define WAL_RDWR 0 /* Normal read/write connection */ 000562 #define WAL_RDONLY 1 /* The WAL file is readonly */ 000563 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 000564 000565 /* 000566 ** Each page of the wal-index mapping contains a hash-table made up of 000567 ** an array of HASHTABLE_NSLOT elements of the following type. 000568 */ 000569 typedef u16 ht_slot; 000570 000571 /* 000572 ** This structure is used to implement an iterator that loops through 000573 ** all frames in the WAL in database page order. Where two or more frames 000574 ** correspond to the same database page, the iterator visits only the 000575 ** frame most recently written to the WAL (in other words, the frame with 000576 ** the largest index). 000577 ** 000578 ** The internals of this structure are only accessed by: 000579 ** 000580 ** walIteratorInit() - Create a new iterator, 000581 ** walIteratorNext() - Step an iterator, 000582 ** walIteratorFree() - Free an iterator. 000583 ** 000584 ** This functionality is used by the checkpoint code (see walCheckpoint()). 000585 */ 000586 struct WalIterator { 000587 u32 iPrior; /* Last result returned from the iterator */ 000588 int nSegment; /* Number of entries in aSegment[] */ 000589 struct WalSegment { 000590 int iNext; /* Next slot in aIndex[] not yet returned */ 000591 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 000592 u32 *aPgno; /* Array of page numbers. */ 000593 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 000594 int iZero; /* Frame number associated with aPgno[0] */ 000595 } aSegment[1]; /* One for every 32KB page in the wal-index */ 000596 }; 000597 000598 /* 000599 ** Define the parameters of the hash tables in the wal-index file. There 000600 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 000601 ** wal-index. 000602 ** 000603 ** Changing any of these constants will alter the wal-index format and 000604 ** create incompatibilities. 000605 */ 000606 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 000607 #define HASHTABLE_HASH_1 383 /* Should be prime */ 000608 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 000609 000610 /* 000611 ** The block of page numbers associated with the first hash-table in a 000612 ** wal-index is smaller than usual. This is so that there is a complete 000613 ** hash-table on each aligned 32KB page of the wal-index. 000614 */ 000615 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 000616 000617 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 000618 #define WALINDEX_PGSZ ( \ 000619 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 000620 ) 000621 000622 /* 000623 ** Structured Exception Handling (SEH) is a Windows-specific technique 000624 ** for catching exceptions raised while accessing memory-mapped files. 000625 ** 000626 ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and 000627 ** deal with system-level errors that arise during WAL -shm file processing. 000628 ** Without this compile-time option, any system-level faults that appear 000629 ** while accessing the memory-mapped -shm file will cause a process-wide 000630 ** signal to be deliver, which will more than likely cause the entire 000631 ** process to exit. 000632 */ 000633 #ifdef SQLITE_USE_SEH 000634 #include <Windows.h> 000635 000636 /* Beginning of a block of code in which an exception might occur */ 000637 # define SEH_TRY __try { \ 000638 assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ 000639 VVA_ONLY(pWal->nSehTry++); 000640 000641 /* The end of a block of code in which an exception might occur */ 000642 # define SEH_EXCEPT(X) \ 000643 VVA_ONLY(pWal->nSehTry--); \ 000644 assert( pWal->nSehTry==0 ); \ 000645 } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } 000646 000647 /* Simulate a memory-mapping fault in the -shm file for testing purposes */ 000648 # define SEH_INJECT_FAULT sehInjectFault(pWal) 000649 000650 /* 000651 ** The second argument is the return value of GetExceptionCode() for the 000652 ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code 000653 ** indicates that the exception may have been caused by accessing the *-shm 000654 ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. 000655 */ 000656 static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ 000657 VVA_ONLY(pWal->nSehTry--); 000658 if( eCode==EXCEPTION_IN_PAGE_ERROR ){ 000659 if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ 000660 /* From MSDN: For this type of exception, the first element of the 000661 ** ExceptionInformation[] array is a read-write flag - 0 if the exception 000662 ** was thrown while reading, 1 if while writing. The second element is 000663 ** the virtual address being accessed. The "third array element specifies 000664 ** the underlying NTSTATUS code that resulted in the exception". */ 000665 pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; 000666 } 000667 return EXCEPTION_EXECUTE_HANDLER; 000668 } 000669 return EXCEPTION_CONTINUE_SEARCH; 000670 } 000671 000672 /* 000673 ** If one is configured, invoke the xTestCallback callback with 650 as 000674 ** the argument. If it returns true, throw the same exception that is 000675 ** thrown by the system if the *-shm file mapping is accessed after it 000676 ** has been invalidated. 000677 */ 000678 static void sehInjectFault(Wal *pWal){ 000679 int res; 000680 assert( pWal->nSehTry>0 ); 000681 000682 res = sqlite3FaultSim(650); 000683 if( res!=0 ){ 000684 ULONG_PTR aArg[3]; 000685 aArg[0] = 0; 000686 aArg[1] = 0; 000687 aArg[2] = (ULONG_PTR)res; 000688 RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); 000689 } 000690 } 000691 000692 /* 000693 ** There are two ways to use this macro. To set a pointer to be freed 000694 ** if an exception is thrown: 000695 ** 000696 ** SEH_FREE_ON_ERROR(0, pPtr); 000697 ** 000698 ** and to cancel the same: 000699 ** 000700 ** SEH_FREE_ON_ERROR(pPtr, 0); 000701 ** 000702 ** In the first case, there must not already be a pointer registered to 000703 ** be freed. In the second case, pPtr must be the registered pointer. 000704 */ 000705 #define SEH_FREE_ON_ERROR(X,Y) \ 000706 assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y 000707 000708 /* 000709 ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] 000710 ** to be set to pValue if an exception is thrown: 000711 ** 000712 ** SEH_SET_ON_ERROR(iPg, pValue); 000713 ** 000714 ** and to cancel the same: 000715 ** 000716 ** SEH_SET_ON_ERROR(0, 0); 000717 */ 000718 #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y 000719 000720 #else 000721 # define SEH_TRY VVA_ONLY(pWal->nSehTry++); 000722 # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); 000723 # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); 000724 # define SEH_FREE_ON_ERROR(X,Y) 000725 # define SEH_SET_ON_ERROR(X,Y) 000726 #endif /* ifdef SQLITE_USE_SEH */ 000727 000728 000729 /* 000730 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 000731 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 000732 ** numbered from zero. 000733 ** 000734 ** If the wal-index is currently smaller the iPage pages then the size 000735 ** of the wal-index might be increased, but only if it is safe to do 000736 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 000737 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 000738 ** 000739 ** Three possible result scenarios: 000740 ** 000741 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page 000742 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL 000743 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 000744 ** 000745 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 000746 */ 000747 static SQLITE_NOINLINE int walIndexPageRealloc( 000748 Wal *pWal, /* The WAL context */ 000749 int iPage, /* The page we seek */ 000750 volatile u32 **ppPage /* Write the page pointer here */ 000751 ){ 000752 int rc = SQLITE_OK; 000753 000754 /* Enlarge the pWal->apWiData[] array if required */ 000755 if( pWal->nWiData<=iPage ){ 000756 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 000757 volatile u32 **apNew; 000758 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 000759 if( !apNew ){ 000760 *ppPage = 0; 000761 return SQLITE_NOMEM_BKPT; 000762 } 000763 memset((void*)&apNew[pWal->nWiData], 0, 000764 sizeof(u32*)*(iPage+1-pWal->nWiData)); 000765 pWal->apWiData = apNew; 000766 pWal->nWiData = iPage+1; 000767 } 000768 000769 /* Request a pointer to the required page from the VFS */ 000770 assert( pWal->apWiData[iPage]==0 ); 000771 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 000772 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 000773 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 000774 }else{ 000775 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 000776 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 000777 ); 000778 assert( pWal->apWiData[iPage]!=0 000779 || rc!=SQLITE_OK 000780 || (pWal->writeLock==0 && iPage==0) ); 000781 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 000782 if( rc==SQLITE_OK ){ 000783 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 000784 }else if( (rc&0xff)==SQLITE_READONLY ){ 000785 pWal->readOnly |= WAL_SHM_RDONLY; 000786 if( rc==SQLITE_READONLY ){ 000787 rc = SQLITE_OK; 000788 } 000789 } 000790 } 000791 000792 *ppPage = pWal->apWiData[iPage]; 000793 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 000794 return rc; 000795 } 000796 static int walIndexPage( 000797 Wal *pWal, /* The WAL context */ 000798 int iPage, /* The page we seek */ 000799 volatile u32 **ppPage /* Write the page pointer here */ 000800 ){ 000801 SEH_INJECT_FAULT; 000802 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 000803 return walIndexPageRealloc(pWal, iPage, ppPage); 000804 } 000805 return SQLITE_OK; 000806 } 000807 000808 /* 000809 ** Return a pointer to the WalCkptInfo structure in the wal-index. 000810 */ 000811 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 000812 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000813 SEH_INJECT_FAULT; 000814 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 000815 } 000816 000817 /* 000818 ** Return a pointer to the WalIndexHdr structure in the wal-index. 000819 */ 000820 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 000821 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000822 SEH_INJECT_FAULT; 000823 return (volatile WalIndexHdr*)pWal->apWiData[0]; 000824 } 000825 000826 /* 000827 ** The argument to this macro must be of type u32. On a little-endian 000828 ** architecture, it returns the u32 value that results from interpreting 000829 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 000830 ** returns the value that would be produced by interpreting the 4 bytes 000831 ** of the input value as a little-endian integer. 000832 */ 000833 #define BYTESWAP32(x) ( \ 000834 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 000835 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 000836 ) 000837 000838 /* 000839 ** Generate or extend an 8 byte checksum based on the data in 000840 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 000841 ** initial values of 0 and 0 if aIn==NULL). 000842 ** 000843 ** The checksum is written back into aOut[] before returning. 000844 ** 000845 ** nByte must be a positive multiple of 8. 000846 */ 000847 static void walChecksumBytes( 000848 int nativeCksum, /* True for native byte-order, false for non-native */ 000849 u8 *a, /* Content to be checksummed */ 000850 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 000851 const u32 *aIn, /* Initial checksum value input */ 000852 u32 *aOut /* OUT: Final checksum value output */ 000853 ){ 000854 u32 s1, s2; 000855 u32 *aData = (u32 *)a; 000856 u32 *aEnd = (u32 *)&a[nByte]; 000857 000858 if( aIn ){ 000859 s1 = aIn[0]; 000860 s2 = aIn[1]; 000861 }else{ 000862 s1 = s2 = 0; 000863 } 000864 000865 assert( nByte>=8 ); 000866 assert( (nByte&0x00000007)==0 ); 000867 assert( nByte<=65536 ); 000868 assert( nByte%4==0 ); 000869 000870 if( !nativeCksum ){ 000871 do { 000872 s1 += BYTESWAP32(aData[0]) + s2; 000873 s2 += BYTESWAP32(aData[1]) + s1; 000874 aData += 2; 000875 }while( aData<aEnd ); 000876 }else if( nByte%64==0 ){ 000877 do { 000878 s1 += *aData++ + s2; 000879 s2 += *aData++ + s1; 000880 s1 += *aData++ + s2; 000881 s2 += *aData++ + s1; 000882 s1 += *aData++ + s2; 000883 s2 += *aData++ + s1; 000884 s1 += *aData++ + s2; 000885 s2 += *aData++ + s1; 000886 s1 += *aData++ + s2; 000887 s2 += *aData++ + s1; 000888 s1 += *aData++ + s2; 000889 s2 += *aData++ + s1; 000890 s1 += *aData++ + s2; 000891 s2 += *aData++ + s1; 000892 s1 += *aData++ + s2; 000893 s2 += *aData++ + s1; 000894 }while( aData<aEnd ); 000895 }else{ 000896 do { 000897 s1 += *aData++ + s2; 000898 s2 += *aData++ + s1; 000899 }while( aData<aEnd ); 000900 } 000901 assert( aData==aEnd ); 000902 000903 aOut[0] = s1; 000904 aOut[1] = s2; 000905 } 000906 000907 /* 000908 ** If there is the possibility of concurrent access to the SHM file 000909 ** from multiple threads and/or processes, then do a memory barrier. 000910 */ 000911 static void walShmBarrier(Wal *pWal){ 000912 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 000913 sqlite3OsShmBarrier(pWal->pDbFd); 000914 } 000915 } 000916 000917 /* 000918 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 000919 ** definition as a hint that the function contains constructs that 000920 ** might give false-positive TSAN warnings. 000921 ** 000922 ** See tag-20200519-1. 000923 */ 000924 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 000925 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 000926 #else 000927 # define SQLITE_NO_TSAN 000928 #endif 000929 000930 /* 000931 ** Write the header information in pWal->hdr into the wal-index. 000932 ** 000933 ** The checksum on pWal->hdr is updated before it is written. 000934 */ 000935 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 000936 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 000937 const int nCksum = offsetof(WalIndexHdr, aCksum); 000938 000939 assert( pWal->writeLock ); 000940 pWal->hdr.isInit = 1; 000941 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 000942 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 000943 /* Possible TSAN false-positive. See tag-20200519-1 */ 000944 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000945 walShmBarrier(pWal); 000946 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000947 } 000948 000949 /* 000950 ** This function encodes a single frame header and writes it to a buffer 000951 ** supplied by the caller. A frame-header is made up of a series of 000952 ** 4-byte big-endian integers, as follows: 000953 ** 000954 ** 0: Page number. 000955 ** 4: For commit records, the size of the database image in pages 000956 ** after the commit. For all other records, zero. 000957 ** 8: Salt-1 (copied from the wal-header) 000958 ** 12: Salt-2 (copied from the wal-header) 000959 ** 16: Checksum-1. 000960 ** 20: Checksum-2. 000961 */ 000962 static void walEncodeFrame( 000963 Wal *pWal, /* The write-ahead log */ 000964 u32 iPage, /* Database page number for frame */ 000965 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 000966 u8 *aData, /* Pointer to page data */ 000967 u8 *aFrame /* OUT: Write encoded frame here */ 000968 ){ 000969 int nativeCksum; /* True for native byte-order checksums */ 000970 u32 *aCksum = pWal->hdr.aFrameCksum; 000971 assert( WAL_FRAME_HDRSIZE==24 ); 000972 sqlite3Put4byte(&aFrame[0], iPage); 000973 sqlite3Put4byte(&aFrame[4], nTruncate); 000974 if( pWal->iReCksum==0 ){ 000975 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 000976 000977 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 000978 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 000979 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 000980 000981 sqlite3Put4byte(&aFrame[16], aCksum[0]); 000982 sqlite3Put4byte(&aFrame[20], aCksum[1]); 000983 }else{ 000984 memset(&aFrame[8], 0, 16); 000985 } 000986 } 000987 000988 /* 000989 ** Check to see if the frame with header in aFrame[] and content 000990 ** in aData[] is valid. If it is a valid frame, fill *piPage and 000991 ** *pnTruncate and return true. Return if the frame is not valid. 000992 */ 000993 static int walDecodeFrame( 000994 Wal *pWal, /* The write-ahead log */ 000995 u32 *piPage, /* OUT: Database page number for frame */ 000996 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 000997 u8 *aData, /* Pointer to page data (for checksum) */ 000998 u8 *aFrame /* Frame data */ 000999 ){ 001000 int nativeCksum; /* True for native byte-order checksums */ 001001 u32 *aCksum = pWal->hdr.aFrameCksum; 001002 u32 pgno; /* Page number of the frame */ 001003 assert( WAL_FRAME_HDRSIZE==24 ); 001004 001005 /* A frame is only valid if the salt values in the frame-header 001006 ** match the salt values in the wal-header. 001007 */ 001008 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 001009 return 0; 001010 } 001011 001012 /* A frame is only valid if the page number is greater than zero. 001013 */ 001014 pgno = sqlite3Get4byte(&aFrame[0]); 001015 if( pgno==0 ){ 001016 return 0; 001017 } 001018 001019 /* A frame is only valid if a checksum of the WAL header, 001020 ** all prior frames, the first 16 bytes of this frame-header, 001021 ** and the frame-data matches the checksum in the last 8 001022 ** bytes of this frame-header. 001023 */ 001024 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 001025 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 001026 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 001027 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 001028 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 001029 ){ 001030 /* Checksum failed. */ 001031 return 0; 001032 } 001033 001034 /* If we reach this point, the frame is valid. Return the page number 001035 ** and the new database size. 001036 */ 001037 *piPage = pgno; 001038 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 001039 return 1; 001040 } 001041 001042 001043 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 001044 /* 001045 ** Names of locks. This routine is used to provide debugging output and is not 001046 ** a part of an ordinary build. 001047 */ 001048 static const char *walLockName(int lockIdx){ 001049 if( lockIdx==WAL_WRITE_LOCK ){ 001050 return "WRITE-LOCK"; 001051 }else if( lockIdx==WAL_CKPT_LOCK ){ 001052 return "CKPT-LOCK"; 001053 }else if( lockIdx==WAL_RECOVER_LOCK ){ 001054 return "RECOVER-LOCK"; 001055 }else{ 001056 static char zName[15]; 001057 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 001058 lockIdx-WAL_READ_LOCK(0)); 001059 return zName; 001060 } 001061 } 001062 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 001063 001064 001065 /* 001066 ** Set or release locks on the WAL. Locks are either shared or exclusive. 001067 ** A lock cannot be moved directly between shared and exclusive - it must go 001068 ** through the unlocked state first. 001069 ** 001070 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 001071 */ 001072 static int walLockShared(Wal *pWal, int lockIdx){ 001073 int rc; 001074 if( pWal->exclusiveMode ) return SQLITE_OK; 001075 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001076 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 001077 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 001078 walLockName(lockIdx), rc ? "failed" : "ok")); 001079 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001080 #ifdef SQLITE_USE_SEH 001081 if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); 001082 #endif 001083 return rc; 001084 } 001085 static void walUnlockShared(Wal *pWal, int lockIdx){ 001086 if( pWal->exclusiveMode ) return; 001087 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001088 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 001089 #ifdef SQLITE_USE_SEH 001090 pWal->lockMask &= ~(1 << lockIdx); 001091 #endif 001092 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 001093 } 001094 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 001095 int rc; 001096 if( pWal->exclusiveMode ) return SQLITE_OK; 001097 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001098 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 001099 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 001100 walLockName(lockIdx), n, rc ? "failed" : "ok")); 001101 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001102 #ifdef SQLITE_USE_SEH 001103 if( rc==SQLITE_OK ){ 001104 pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001105 } 001106 #endif 001107 return rc; 001108 } 001109 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 001110 if( pWal->exclusiveMode ) return; 001111 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001112 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 001113 #ifdef SQLITE_USE_SEH 001114 pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001115 #endif 001116 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 001117 walLockName(lockIdx), n)); 001118 } 001119 001120 /* 001121 ** Compute a hash on a page number. The resulting hash value must land 001122 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 001123 ** the hash to the next value in the event of a collision. 001124 */ 001125 static int walHash(u32 iPage){ 001126 assert( iPage>0 ); 001127 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 001128 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 001129 } 001130 static int walNextHash(int iPriorHash){ 001131 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 001132 } 001133 001134 /* 001135 ** An instance of the WalHashLoc object is used to describe the location 001136 ** of a page hash table in the wal-index. This becomes the return value 001137 ** from walHashGet(). 001138 */ 001139 typedef struct WalHashLoc WalHashLoc; 001140 struct WalHashLoc { 001141 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 001142 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 001143 u32 iZero; /* One less than the frame number of first indexed*/ 001144 }; 001145 001146 /* 001147 ** Return pointers to the hash table and page number array stored on 001148 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 001149 ** numbered starting from 0. 001150 ** 001151 ** Set output variable pLoc->aHash to point to the start of the hash table 001152 ** in the wal-index file. Set pLoc->iZero to one less than the frame 001153 ** number of the first frame indexed by this hash table. If a 001154 ** slot in the hash table is set to N, it refers to frame number 001155 ** (pLoc->iZero+N) in the log. 001156 ** 001157 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the 001158 ** first frame indexed by the hash table, frame (pLoc->iZero). 001159 */ 001160 static int walHashGet( 001161 Wal *pWal, /* WAL handle */ 001162 int iHash, /* Find the iHash'th table */ 001163 WalHashLoc *pLoc /* OUT: Hash table location */ 001164 ){ 001165 int rc; /* Return code */ 001166 001167 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 001168 assert( rc==SQLITE_OK || iHash>0 ); 001169 001170 if( pLoc->aPgno ){ 001171 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 001172 if( iHash==0 ){ 001173 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 001174 pLoc->iZero = 0; 001175 }else{ 001176 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 001177 } 001178 }else if( NEVER(rc==SQLITE_OK) ){ 001179 rc = SQLITE_ERROR; 001180 } 001181 return rc; 001182 } 001183 001184 /* 001185 ** Return the number of the wal-index page that contains the hash-table 001186 ** and page-number array that contain entries corresponding to WAL frame 001187 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 001188 ** are numbered starting from 0. 001189 */ 001190 static int walFramePage(u32 iFrame){ 001191 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 001192 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 001193 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 001194 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 001195 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 001196 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 001197 ); 001198 assert( iHash>=0 ); 001199 return iHash; 001200 } 001201 001202 /* 001203 ** Return the page number associated with frame iFrame in this WAL. 001204 */ 001205 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 001206 int iHash = walFramePage(iFrame); 001207 SEH_INJECT_FAULT; 001208 if( iHash==0 ){ 001209 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 001210 } 001211 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 001212 } 001213 001214 /* 001215 ** Remove entries from the hash table that point to WAL slots greater 001216 ** than pWal->hdr.mxFrame. 001217 ** 001218 ** This function is called whenever pWal->hdr.mxFrame is decreased due 001219 ** to a rollback or savepoint. 001220 ** 001221 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 001222 ** updated. Any later hash tables will be automatically cleared when 001223 ** pWal->hdr.mxFrame advances to the point where those hash tables are 001224 ** actually needed. 001225 */ 001226 static void walCleanupHash(Wal *pWal){ 001227 WalHashLoc sLoc; /* Hash table location */ 001228 int iLimit = 0; /* Zero values greater than this */ 001229 int nByte; /* Number of bytes to zero in aPgno[] */ 001230 int i; /* Used to iterate through aHash[] */ 001231 001232 assert( pWal->writeLock ); 001233 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 001234 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 001235 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 001236 001237 if( pWal->hdr.mxFrame==0 ) return; 001238 001239 /* Obtain pointers to the hash-table and page-number array containing 001240 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 001241 ** that the page said hash-table and array reside on is already mapped.(1) 001242 */ 001243 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 001244 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 001245 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 001246 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 001247 001248 /* Zero all hash-table entries that correspond to frame numbers greater 001249 ** than pWal->hdr.mxFrame. 001250 */ 001251 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 001252 assert( iLimit>0 ); 001253 for(i=0; i<HASHTABLE_NSLOT; i++){ 001254 if( sLoc.aHash[i]>iLimit ){ 001255 sLoc.aHash[i] = 0; 001256 } 001257 } 001258 001259 /* Zero the entries in the aPgno array that correspond to frames with 001260 ** frame numbers greater than pWal->hdr.mxFrame. 001261 */ 001262 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); 001263 assert( nByte>=0 ); 001264 memset((void *)&sLoc.aPgno[iLimit], 0, nByte); 001265 001266 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001267 /* Verify that the every entry in the mapping region is still reachable 001268 ** via the hash table even after the cleanup. 001269 */ 001270 if( iLimit ){ 001271 int j; /* Loop counter */ 001272 int iKey; /* Hash key */ 001273 for(j=0; j<iLimit; j++){ 001274 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 001275 if( sLoc.aHash[iKey]==j+1 ) break; 001276 } 001277 assert( sLoc.aHash[iKey]==j+1 ); 001278 } 001279 } 001280 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001281 } 001282 001283 001284 /* 001285 ** Set an entry in the wal-index that will map database page number 001286 ** pPage into WAL frame iFrame. 001287 */ 001288 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 001289 int rc; /* Return code */ 001290 WalHashLoc sLoc; /* Wal-index hash table location */ 001291 001292 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 001293 001294 /* Assuming the wal-index file was successfully mapped, populate the 001295 ** page number array and hash table entry. 001296 */ 001297 if( rc==SQLITE_OK ){ 001298 int iKey; /* Hash table key */ 001299 int idx; /* Value to write to hash-table slot */ 001300 int nCollide; /* Number of hash collisions */ 001301 001302 idx = iFrame - sLoc.iZero; 001303 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 001304 001305 /* If this is the first entry to be added to this hash-table, zero the 001306 ** entire hash table and aPgno[] array before proceeding. 001307 */ 001308 if( idx==1 ){ 001309 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); 001310 assert( nByte>=0 ); 001311 memset((void*)sLoc.aPgno, 0, nByte); 001312 } 001313 001314 /* If the entry in aPgno[] is already set, then the previous writer 001315 ** must have exited unexpectedly in the middle of a transaction (after 001316 ** writing one or more dirty pages to the WAL to free up memory). 001317 ** Remove the remnants of that writers uncommitted transaction from 001318 ** the hash-table before writing any new entries. 001319 */ 001320 if( sLoc.aPgno[idx-1] ){ 001321 walCleanupHash(pWal); 001322 assert( !sLoc.aPgno[idx-1] ); 001323 } 001324 001325 /* Write the aPgno[] array entry and the hash-table slot. */ 001326 nCollide = idx; 001327 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 001328 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 001329 } 001330 sLoc.aPgno[idx-1] = iPage; 001331 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 001332 001333 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001334 /* Verify that the number of entries in the hash table exactly equals 001335 ** the number of entries in the mapping region. 001336 */ 001337 { 001338 int i; /* Loop counter */ 001339 int nEntry = 0; /* Number of entries in the hash table */ 001340 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 001341 assert( nEntry==idx ); 001342 } 001343 001344 /* Verify that the every entry in the mapping region is reachable 001345 ** via the hash table. This turns out to be a really, really expensive 001346 ** thing to check, so only do this occasionally - not on every 001347 ** iteration. 001348 */ 001349 if( (idx&0x3ff)==0 ){ 001350 int i; /* Loop counter */ 001351 for(i=0; i<idx; i++){ 001352 for(iKey=walHash(sLoc.aPgno[i]); 001353 sLoc.aHash[iKey]; 001354 iKey=walNextHash(iKey)){ 001355 if( sLoc.aHash[iKey]==i+1 ) break; 001356 } 001357 assert( sLoc.aHash[iKey]==i+1 ); 001358 } 001359 } 001360 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001361 } 001362 001363 return rc; 001364 } 001365 001366 001367 /* 001368 ** Recover the wal-index by reading the write-ahead log file. 001369 ** 001370 ** This routine first tries to establish an exclusive lock on the 001371 ** wal-index to prevent other threads/processes from doing anything 001372 ** with the WAL or wal-index while recovery is running. The 001373 ** WAL_RECOVER_LOCK is also held so that other threads will know 001374 ** that this thread is running recovery. If unable to establish 001375 ** the necessary locks, this routine returns SQLITE_BUSY. 001376 */ 001377 static int walIndexRecover(Wal *pWal){ 001378 int rc; /* Return Code */ 001379 i64 nSize; /* Size of log file */ 001380 u32 aFrameCksum[2] = {0, 0}; 001381 int iLock; /* Lock offset to lock for checkpoint */ 001382 001383 /* Obtain an exclusive lock on all byte in the locking range not already 001384 ** locked by the caller. The caller is guaranteed to have locked the 001385 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 001386 ** If successful, the same bytes that are locked here are unlocked before 001387 ** this function returns. 001388 */ 001389 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 001390 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 001391 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 001392 assert( pWal->writeLock ); 001393 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 001394 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001395 if( rc ){ 001396 return rc; 001397 } 001398 001399 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 001400 001401 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 001402 001403 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 001404 if( rc!=SQLITE_OK ){ 001405 goto recovery_error; 001406 } 001407 001408 if( nSize>WAL_HDRSIZE ){ 001409 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 001410 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 001411 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 001412 int szFrame; /* Number of bytes in buffer aFrame[] */ 001413 u8 *aData; /* Pointer to data part of aFrame buffer */ 001414 int szPage; /* Page size according to the log */ 001415 u32 magic; /* Magic value read from WAL header */ 001416 u32 version; /* Magic value read from WAL header */ 001417 int isValid; /* True if this frame is valid */ 001418 u32 iPg; /* Current 32KB wal-index page */ 001419 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 001420 001421 /* Read in the WAL header. */ 001422 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 001423 if( rc!=SQLITE_OK ){ 001424 goto recovery_error; 001425 } 001426 001427 /* If the database page size is not a power of two, or is greater than 001428 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 001429 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 001430 ** WAL file. 001431 */ 001432 magic = sqlite3Get4byte(&aBuf[0]); 001433 szPage = sqlite3Get4byte(&aBuf[8]); 001434 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 001435 || szPage&(szPage-1) 001436 || szPage>SQLITE_MAX_PAGE_SIZE 001437 || szPage<512 001438 ){ 001439 goto finished; 001440 } 001441 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 001442 pWal->szPage = szPage; 001443 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 001444 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 001445 001446 /* Verify that the WAL header checksum is correct */ 001447 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 001448 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 001449 ); 001450 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 001451 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 001452 ){ 001453 goto finished; 001454 } 001455 001456 /* Verify that the version number on the WAL format is one that 001457 ** are able to understand */ 001458 version = sqlite3Get4byte(&aBuf[4]); 001459 if( version!=WAL_MAX_VERSION ){ 001460 rc = SQLITE_CANTOPEN_BKPT; 001461 goto finished; 001462 } 001463 001464 /* Malloc a buffer to read frames into. */ 001465 szFrame = szPage + WAL_FRAME_HDRSIZE; 001466 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 001467 SEH_FREE_ON_ERROR(0, aFrame); 001468 if( !aFrame ){ 001469 rc = SQLITE_NOMEM_BKPT; 001470 goto recovery_error; 001471 } 001472 aData = &aFrame[WAL_FRAME_HDRSIZE]; 001473 aPrivate = (u32*)&aData[szPage]; 001474 001475 /* Read all frames from the log file. */ 001476 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 001477 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 001478 u32 *aShare; 001479 u32 iFrame; /* Index of last frame read */ 001480 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 001481 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 001482 u32 nHdr, nHdr32; 001483 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 001484 assert( aShare!=0 || rc!=SQLITE_OK ); 001485 if( aShare==0 ) break; 001486 SEH_SET_ON_ERROR(iPg, aShare); 001487 pWal->apWiData[iPg] = aPrivate; 001488 001489 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 001490 i64 iOffset = walFrameOffset(iFrame, szPage); 001491 u32 pgno; /* Database page number for frame */ 001492 u32 nTruncate; /* dbsize field from frame header */ 001493 001494 /* Read and decode the next log frame. */ 001495 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 001496 if( rc!=SQLITE_OK ) break; 001497 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 001498 if( !isValid ) break; 001499 rc = walIndexAppend(pWal, iFrame, pgno); 001500 if( NEVER(rc!=SQLITE_OK) ) break; 001501 001502 /* If nTruncate is non-zero, this is a commit record. */ 001503 if( nTruncate ){ 001504 pWal->hdr.mxFrame = iFrame; 001505 pWal->hdr.nPage = nTruncate; 001506 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 001507 testcase( szPage<=32768 ); 001508 testcase( szPage>=65536 ); 001509 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 001510 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 001511 } 001512 } 001513 pWal->apWiData[iPg] = aShare; 001514 SEH_SET_ON_ERROR(0,0); 001515 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 001516 nHdr32 = nHdr / sizeof(u32); 001517 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 001518 /* Memcpy() should work fine here, on all reasonable implementations. 001519 ** Technically, memcpy() might change the destination to some 001520 ** intermediate value before setting to the final value, and that might 001521 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 001522 ** do that, according to the spec, but no memcpy() implementation that 001523 ** we know of actually does that, which is why we say that memcpy() 001524 ** is safe for this. Memcpy() is certainly a lot faster. 001525 */ 001526 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 001527 #else 001528 /* In the event that some platform is found for which memcpy() 001529 ** changes the destination to some intermediate value before 001530 ** setting the final value, this alternative copy routine is 001531 ** provided. 001532 */ 001533 { 001534 int i; 001535 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 001536 if( aShare[i]!=aPrivate[i] ){ 001537 /* Atomic memory operations are not required here because if 001538 ** the value needs to be changed, that means it is not being 001539 ** accessed concurrently. */ 001540 aShare[i] = aPrivate[i]; 001541 } 001542 } 001543 } 001544 #endif 001545 SEH_INJECT_FAULT; 001546 if( iFrame<=iLast ) break; 001547 } 001548 001549 SEH_FREE_ON_ERROR(aFrame, 0); 001550 sqlite3_free(aFrame); 001551 } 001552 001553 finished: 001554 if( rc==SQLITE_OK ){ 001555 volatile WalCkptInfo *pInfo; 001556 int i; 001557 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 001558 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 001559 walIndexWriteHdr(pWal); 001560 001561 /* Reset the checkpoint-header. This is safe because this thread is 001562 ** currently holding locks that exclude all other writers and 001563 ** checkpointers. Then set the values of read-mark slots 1 through N. 001564 */ 001565 pInfo = walCkptInfo(pWal); 001566 pInfo->nBackfill = 0; 001567 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 001568 pInfo->aReadMark[0] = 0; 001569 for(i=1; i<WAL_NREADER; i++){ 001570 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 001571 if( rc==SQLITE_OK ){ 001572 if( i==1 && pWal->hdr.mxFrame ){ 001573 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 001574 }else{ 001575 pInfo->aReadMark[i] = READMARK_NOT_USED; 001576 } 001577 SEH_INJECT_FAULT; 001578 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 001579 }else if( rc!=SQLITE_BUSY ){ 001580 goto recovery_error; 001581 } 001582 } 001583 001584 /* If more than one frame was recovered from the log file, report an 001585 ** event via sqlite3_log(). This is to help with identifying performance 001586 ** problems caused by applications routinely shutting down without 001587 ** checkpointing the log file. 001588 */ 001589 if( pWal->hdr.nPage ){ 001590 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 001591 "recovered %d frames from WAL file %s", 001592 pWal->hdr.mxFrame, pWal->zWalName 001593 ); 001594 } 001595 } 001596 001597 recovery_error: 001598 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 001599 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001600 return rc; 001601 } 001602 001603 /* 001604 ** Close an open wal-index. 001605 */ 001606 static void walIndexClose(Wal *pWal, int isDelete){ 001607 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 001608 int i; 001609 for(i=0; i<pWal->nWiData; i++){ 001610 sqlite3_free((void *)pWal->apWiData[i]); 001611 pWal->apWiData[i] = 0; 001612 } 001613 } 001614 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 001615 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 001616 } 001617 } 001618 001619 /* 001620 ** Open a connection to the WAL file zWalName. The database file must 001621 ** already be opened on connection pDbFd. The buffer that zWalName points 001622 ** to must remain valid for the lifetime of the returned Wal* handle. 001623 ** 001624 ** A SHARED lock should be held on the database file when this function 001625 ** is called. The purpose of this SHARED lock is to prevent any other 001626 ** client from unlinking the WAL or wal-index file. If another process 001627 ** were to do this just after this client opened one of these files, the 001628 ** system would be badly broken. 001629 ** 001630 ** If the log file is successfully opened, SQLITE_OK is returned and 001631 ** *ppWal is set to point to a new WAL handle. If an error occurs, 001632 ** an SQLite error code is returned and *ppWal is left unmodified. 001633 */ 001634 int sqlite3WalOpen( 001635 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 001636 sqlite3_file *pDbFd, /* The open database file */ 001637 const char *zWalName, /* Name of the WAL file */ 001638 int bNoShm, /* True to run in heap-memory mode */ 001639 i64 mxWalSize, /* Truncate WAL to this size on reset */ 001640 Wal **ppWal /* OUT: Allocated Wal handle */ 001641 ){ 001642 int rc; /* Return Code */ 001643 Wal *pRet; /* Object to allocate and return */ 001644 int flags; /* Flags passed to OsOpen() */ 001645 001646 assert( zWalName && zWalName[0] ); 001647 assert( pDbFd ); 001648 001649 /* Verify the values of various constants. Any changes to the values 001650 ** of these constants would result in an incompatible on-disk format 001651 ** for the -shm file. Any change that causes one of these asserts to 001652 ** fail is a backward compatibility problem, even if the change otherwise 001653 ** works. 001654 ** 001655 ** This table also serves as a helpful cross-reference when trying to 001656 ** interpret hex dumps of the -shm file. 001657 */ 001658 assert( 48 == sizeof(WalIndexHdr) ); 001659 assert( 40 == sizeof(WalCkptInfo) ); 001660 assert( 120 == WALINDEX_LOCK_OFFSET ); 001661 assert( 136 == WALINDEX_HDR_SIZE ); 001662 assert( 4096 == HASHTABLE_NPAGE ); 001663 assert( 4062 == HASHTABLE_NPAGE_ONE ); 001664 assert( 8192 == HASHTABLE_NSLOT ); 001665 assert( 383 == HASHTABLE_HASH_1 ); 001666 assert( 32768 == WALINDEX_PGSZ ); 001667 assert( 8 == SQLITE_SHM_NLOCK ); 001668 assert( 5 == WAL_NREADER ); 001669 assert( 24 == WAL_FRAME_HDRSIZE ); 001670 assert( 32 == WAL_HDRSIZE ); 001671 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 001672 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 001673 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 001674 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 001675 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 001676 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 001677 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 001678 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 001679 001680 /* In the amalgamation, the os_unix.c and os_win.c source files come before 001681 ** this source file. Verify that the #defines of the locking byte offsets 001682 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 001683 ** For that matter, if the lock offset ever changes from its initial design 001684 ** value of 120, we need to know that so there is an assert() to check it. 001685 */ 001686 #ifdef WIN_SHM_BASE 001687 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001688 #endif 001689 #ifdef UNIX_SHM_BASE 001690 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001691 #endif 001692 001693 001694 /* Allocate an instance of struct Wal to return. */ 001695 *ppWal = 0; 001696 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 001697 if( !pRet ){ 001698 return SQLITE_NOMEM_BKPT; 001699 } 001700 001701 pRet->pVfs = pVfs; 001702 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 001703 pRet->pDbFd = pDbFd; 001704 pRet->readLock = -1; 001705 pRet->mxWalSize = mxWalSize; 001706 pRet->zWalName = zWalName; 001707 pRet->syncHeader = 1; 001708 pRet->padToSectorBoundary = 1; 001709 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 001710 001711 /* Open file handle on the write-ahead log file. */ 001712 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 001713 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 001714 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 001715 pRet->readOnly = WAL_RDONLY; 001716 } 001717 001718 if( rc!=SQLITE_OK ){ 001719 walIndexClose(pRet, 0); 001720 sqlite3OsClose(pRet->pWalFd); 001721 sqlite3_free(pRet); 001722 }else{ 001723 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 001724 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 001725 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 001726 pRet->padToSectorBoundary = 0; 001727 } 001728 *ppWal = pRet; 001729 WALTRACE(("WAL%d: opened\n", pRet)); 001730 } 001731 return rc; 001732 } 001733 001734 /* 001735 ** Change the size to which the WAL file is truncated on each reset. 001736 */ 001737 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 001738 if( pWal ) pWal->mxWalSize = iLimit; 001739 } 001740 001741 /* 001742 ** Find the smallest page number out of all pages held in the WAL that 001743 ** has not been returned by any prior invocation of this method on the 001744 ** same WalIterator object. Write into *piFrame the frame index where 001745 ** that page was last written into the WAL. Write into *piPage the page 001746 ** number. 001747 ** 001748 ** Return 0 on success. If there are no pages in the WAL with a page 001749 ** number larger than *piPage, then return 1. 001750 */ 001751 static int walIteratorNext( 001752 WalIterator *p, /* Iterator */ 001753 u32 *piPage, /* OUT: The page number of the next page */ 001754 u32 *piFrame /* OUT: Wal frame index of next page */ 001755 ){ 001756 u32 iMin; /* Result pgno must be greater than iMin */ 001757 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 001758 int i; /* For looping through segments */ 001759 001760 iMin = p->iPrior; 001761 assert( iMin<0xffffffff ); 001762 for(i=p->nSegment-1; i>=0; i--){ 001763 struct WalSegment *pSegment = &p->aSegment[i]; 001764 while( pSegment->iNext<pSegment->nEntry ){ 001765 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 001766 if( iPg>iMin ){ 001767 if( iPg<iRet ){ 001768 iRet = iPg; 001769 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 001770 } 001771 break; 001772 } 001773 pSegment->iNext++; 001774 } 001775 } 001776 001777 *piPage = p->iPrior = iRet; 001778 return (iRet==0xFFFFFFFF); 001779 } 001780 001781 /* 001782 ** This function merges two sorted lists into a single sorted list. 001783 ** 001784 ** aLeft[] and aRight[] are arrays of indices. The sort key is 001785 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 001786 ** is guaranteed for all J<K: 001787 ** 001788 ** aContent[aLeft[J]] < aContent[aLeft[K]] 001789 ** aContent[aRight[J]] < aContent[aRight[K]] 001790 ** 001791 ** This routine overwrites aRight[] with a new (probably longer) sequence 001792 ** of indices such that the aRight[] contains every index that appears in 001793 ** either aLeft[] or the old aRight[] and such that the second condition 001794 ** above is still met. 001795 ** 001796 ** The aContent[aLeft[X]] values will be unique for all X. And the 001797 ** aContent[aRight[X]] values will be unique too. But there might be 001798 ** one or more combinations of X and Y such that 001799 ** 001800 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 001801 ** 001802 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 001803 */ 001804 static void walMerge( 001805 const u32 *aContent, /* Pages in wal - keys for the sort */ 001806 ht_slot *aLeft, /* IN: Left hand input list */ 001807 int nLeft, /* IN: Elements in array *paLeft */ 001808 ht_slot **paRight, /* IN/OUT: Right hand input list */ 001809 int *pnRight, /* IN/OUT: Elements in *paRight */ 001810 ht_slot *aTmp /* Temporary buffer */ 001811 ){ 001812 int iLeft = 0; /* Current index in aLeft */ 001813 int iRight = 0; /* Current index in aRight */ 001814 int iOut = 0; /* Current index in output buffer */ 001815 int nRight = *pnRight; 001816 ht_slot *aRight = *paRight; 001817 001818 assert( nLeft>0 && nRight>0 ); 001819 while( iRight<nRight || iLeft<nLeft ){ 001820 ht_slot logpage; 001821 Pgno dbpage; 001822 001823 if( (iLeft<nLeft) 001824 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 001825 ){ 001826 logpage = aLeft[iLeft++]; 001827 }else{ 001828 logpage = aRight[iRight++]; 001829 } 001830 dbpage = aContent[logpage]; 001831 001832 aTmp[iOut++] = logpage; 001833 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 001834 001835 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 001836 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 001837 } 001838 001839 *paRight = aLeft; 001840 *pnRight = iOut; 001841 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 001842 } 001843 001844 /* 001845 ** Sort the elements in list aList using aContent[] as the sort key. 001846 ** Remove elements with duplicate keys, preferring to keep the 001847 ** larger aList[] values. 001848 ** 001849 ** The aList[] entries are indices into aContent[]. The values in 001850 ** aList[] are to be sorted so that for all J<K: 001851 ** 001852 ** aContent[aList[J]] < aContent[aList[K]] 001853 ** 001854 ** For any X and Y such that 001855 ** 001856 ** aContent[aList[X]] == aContent[aList[Y]] 001857 ** 001858 ** Keep the larger of the two values aList[X] and aList[Y] and discard 001859 ** the smaller. 001860 */ 001861 static void walMergesort( 001862 const u32 *aContent, /* Pages in wal */ 001863 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 001864 ht_slot *aList, /* IN/OUT: List to sort */ 001865 int *pnList /* IN/OUT: Number of elements in aList[] */ 001866 ){ 001867 struct Sublist { 001868 int nList; /* Number of elements in aList */ 001869 ht_slot *aList; /* Pointer to sub-list content */ 001870 }; 001871 001872 const int nList = *pnList; /* Size of input list */ 001873 int nMerge = 0; /* Number of elements in list aMerge */ 001874 ht_slot *aMerge = 0; /* List to be merged */ 001875 int iList; /* Index into input list */ 001876 u32 iSub = 0; /* Index into aSub array */ 001877 struct Sublist aSub[13]; /* Array of sub-lists */ 001878 001879 memset(aSub, 0, sizeof(aSub)); 001880 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 001881 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 001882 001883 for(iList=0; iList<nList; iList++){ 001884 nMerge = 1; 001885 aMerge = &aList[iList]; 001886 for(iSub=0; iList & (1<<iSub); iSub++){ 001887 struct Sublist *p; 001888 assert( iSub<ArraySize(aSub) ); 001889 p = &aSub[iSub]; 001890 assert( p->aList && p->nList<=(1<<iSub) ); 001891 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 001892 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001893 } 001894 aSub[iSub].aList = aMerge; 001895 aSub[iSub].nList = nMerge; 001896 } 001897 001898 for(iSub++; iSub<ArraySize(aSub); iSub++){ 001899 if( nList & (1<<iSub) ){ 001900 struct Sublist *p; 001901 assert( iSub<ArraySize(aSub) ); 001902 p = &aSub[iSub]; 001903 assert( p->nList<=(1<<iSub) ); 001904 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 001905 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001906 } 001907 } 001908 assert( aMerge==aList ); 001909 *pnList = nMerge; 001910 001911 #ifdef SQLITE_DEBUG 001912 { 001913 int i; 001914 for(i=1; i<*pnList; i++){ 001915 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 001916 } 001917 } 001918 #endif 001919 } 001920 001921 /* 001922 ** Free an iterator allocated by walIteratorInit(). 001923 */ 001924 static void walIteratorFree(WalIterator *p){ 001925 sqlite3_free(p); 001926 } 001927 001928 /* 001929 ** Construct a WalInterator object that can be used to loop over all 001930 ** pages in the WAL following frame nBackfill in ascending order. Frames 001931 ** nBackfill or earlier may be included - excluding them is an optimization 001932 ** only. The caller must hold the checkpoint lock. 001933 ** 001934 ** On success, make *pp point to the newly allocated WalInterator object 001935 ** return SQLITE_OK. Otherwise, return an error code. If this routine 001936 ** returns an error, the value of *pp is undefined. 001937 ** 001938 ** The calling routine should invoke walIteratorFree() to destroy the 001939 ** WalIterator object when it has finished with it. 001940 */ 001941 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 001942 WalIterator *p; /* Return value */ 001943 int nSegment; /* Number of segments to merge */ 001944 u32 iLast; /* Last frame in log */ 001945 sqlite3_int64 nByte; /* Number of bytes to allocate */ 001946 int i; /* Iterator variable */ 001947 ht_slot *aTmp; /* Temp space used by merge-sort */ 001948 int rc = SQLITE_OK; /* Return Code */ 001949 001950 /* This routine only runs while holding the checkpoint lock. And 001951 ** it only runs if there is actually content in the log (mxFrame>0). 001952 */ 001953 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 001954 iLast = pWal->hdr.mxFrame; 001955 001956 /* Allocate space for the WalIterator object. */ 001957 nSegment = walFramePage(iLast) + 1; 001958 nByte = sizeof(WalIterator) 001959 + (nSegment-1)*sizeof(struct WalSegment) 001960 + iLast*sizeof(ht_slot); 001961 p = (WalIterator *)sqlite3_malloc64(nByte 001962 + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 001963 ); 001964 if( !p ){ 001965 return SQLITE_NOMEM_BKPT; 001966 } 001967 memset(p, 0, nByte); 001968 p->nSegment = nSegment; 001969 aTmp = (ht_slot*)&(((u8*)p)[nByte]); 001970 SEH_FREE_ON_ERROR(0, p); 001971 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 001972 WalHashLoc sLoc; 001973 001974 rc = walHashGet(pWal, i, &sLoc); 001975 if( rc==SQLITE_OK ){ 001976 int j; /* Counter variable */ 001977 int nEntry; /* Number of entries in this segment */ 001978 ht_slot *aIndex; /* Sorted index for this segment */ 001979 001980 if( (i+1)==nSegment ){ 001981 nEntry = (int)(iLast - sLoc.iZero); 001982 }else{ 001983 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 001984 } 001985 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 001986 sLoc.iZero++; 001987 001988 for(j=0; j<nEntry; j++){ 001989 aIndex[j] = (ht_slot)j; 001990 } 001991 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 001992 p->aSegment[i].iZero = sLoc.iZero; 001993 p->aSegment[i].nEntry = nEntry; 001994 p->aSegment[i].aIndex = aIndex; 001995 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 001996 } 001997 } 001998 if( rc!=SQLITE_OK ){ 001999 SEH_FREE_ON_ERROR(p, 0); 002000 walIteratorFree(p); 002001 p = 0; 002002 } 002003 *pp = p; 002004 return rc; 002005 } 002006 002007 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002008 002009 002010 /* 002011 ** Attempt to enable blocking locks that block for nMs ms. Return 1 if 002012 ** blocking locks are successfully enabled, or 0 otherwise. 002013 */ 002014 static int walEnableBlockingMs(Wal *pWal, int nMs){ 002015 int rc = sqlite3OsFileControl( 002016 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&nMs 002017 ); 002018 return (rc==SQLITE_OK); 002019 } 002020 002021 /* 002022 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 002023 ** they are supported by the VFS, and (b) the database handle is configured 002024 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 002025 ** or 0 otherwise. 002026 */ 002027 static int walEnableBlocking(Wal *pWal){ 002028 int res = 0; 002029 if( pWal->db ){ 002030 int tmout = pWal->db->busyTimeout; 002031 if( tmout ){ 002032 res = walEnableBlockingMs(pWal, tmout); 002033 } 002034 } 002035 return res; 002036 } 002037 002038 /* 002039 ** Disable blocking locks. 002040 */ 002041 static void walDisableBlocking(Wal *pWal){ 002042 int tmout = 0; 002043 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 002044 } 002045 002046 /* 002047 ** If parameter bLock is true, attempt to enable blocking locks, take 002048 ** the WRITER lock, and then disable blocking locks. If blocking locks 002049 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 002050 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 002051 ** an error if blocking locks can not be enabled. 002052 ** 002053 ** If the bLock parameter is false and the WRITER lock is held, release it. 002054 */ 002055 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 002056 int rc = SQLITE_OK; 002057 assert( pWal->readLock<0 || bLock==0 ); 002058 if( bLock ){ 002059 assert( pWal->db ); 002060 if( walEnableBlocking(pWal) ){ 002061 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 002062 if( rc==SQLITE_OK ){ 002063 pWal->writeLock = 1; 002064 } 002065 walDisableBlocking(pWal); 002066 } 002067 }else if( pWal->writeLock ){ 002068 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002069 pWal->writeLock = 0; 002070 } 002071 return rc; 002072 } 002073 002074 /* 002075 ** Set the database handle used to determine if blocking locks are required. 002076 */ 002077 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 002078 pWal->db = db; 002079 } 002080 002081 #else 002082 # define walEnableBlocking(x) 0 002083 # define walDisableBlocking(x) 002084 # define walEnableBlockingMs(pWal, ms) 0 002085 # define sqlite3WalDb(pWal, db) 002086 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 002087 002088 002089 /* 002090 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 002091 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 002092 ** busy-handler function. Invoke it and retry the lock until either the 002093 ** lock is successfully obtained or the busy-handler returns 0. 002094 */ 002095 static int walBusyLock( 002096 Wal *pWal, /* WAL connection */ 002097 int (*xBusy)(void*), /* Function to call when busy */ 002098 void *pBusyArg, /* Context argument for xBusyHandler */ 002099 int lockIdx, /* Offset of first byte to lock */ 002100 int n /* Number of bytes to lock */ 002101 ){ 002102 int rc; 002103 do { 002104 rc = walLockExclusive(pWal, lockIdx, n); 002105 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 002106 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002107 if( rc==SQLITE_BUSY_TIMEOUT ){ 002108 walDisableBlocking(pWal); 002109 rc = SQLITE_BUSY; 002110 } 002111 #endif 002112 return rc; 002113 } 002114 002115 /* 002116 ** The cache of the wal-index header must be valid to call this function. 002117 ** Return the page-size in bytes used by the database. 002118 */ 002119 static int walPagesize(Wal *pWal){ 002120 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002121 } 002122 002123 /* 002124 ** The following is guaranteed when this function is called: 002125 ** 002126 ** a) the WRITER lock is held, 002127 ** b) the entire log file has been checkpointed, and 002128 ** c) any existing readers are reading exclusively from the database 002129 ** file - there are no readers that may attempt to read a frame from 002130 ** the log file. 002131 ** 002132 ** This function updates the shared-memory structures so that the next 002133 ** client to write to the database (which may be this one) does so by 002134 ** writing frames into the start of the log file. 002135 ** 002136 ** The value of parameter salt1 is used as the aSalt[1] value in the 002137 ** new wal-index header. It should be passed a pseudo-random value (i.e. 002138 ** one obtained from sqlite3_randomness()). 002139 */ 002140 static void walRestartHdr(Wal *pWal, u32 salt1){ 002141 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002142 int i; /* Loop counter */ 002143 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 002144 pWal->nCkpt++; 002145 pWal->hdr.mxFrame = 0; 002146 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 002147 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 002148 walIndexWriteHdr(pWal); 002149 AtomicStore(&pInfo->nBackfill, 0); 002150 pInfo->nBackfillAttempted = 0; 002151 pInfo->aReadMark[1] = 0; 002152 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 002153 assert( pInfo->aReadMark[0]==0 ); 002154 } 002155 002156 /* 002157 ** Copy as much content as we can from the WAL back into the database file 002158 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 002159 ** 002160 ** The amount of information copies from WAL to database might be limited 002161 ** by active readers. This routine will never overwrite a database page 002162 ** that a concurrent reader might be using. 002163 ** 002164 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 002165 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 002166 ** checkpoints are always run by a background thread or background 002167 ** process, foreground threads will never block on a lengthy fsync call. 002168 ** 002169 ** Fsync is called on the WAL before writing content out of the WAL and 002170 ** into the database. This ensures that if the new content is persistent 002171 ** in the WAL and can be recovered following a power-loss or hard reset. 002172 ** 002173 ** Fsync is also called on the database file if (and only if) the entire 002174 ** WAL content is copied into the database file. This second fsync makes 002175 ** it safe to delete the WAL since the new content will persist in the 002176 ** database file. 002177 ** 002178 ** This routine uses and updates the nBackfill field of the wal-index header. 002179 ** This is the only routine that will increase the value of nBackfill. 002180 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 002181 ** its value.) 002182 ** 002183 ** The caller must be holding sufficient locks to ensure that no other 002184 ** checkpoint is running (in any other thread or process) at the same 002185 ** time. 002186 */ 002187 static int walCheckpoint( 002188 Wal *pWal, /* Wal connection */ 002189 sqlite3 *db, /* Check for interrupts on this handle */ 002190 int eMode, /* One of PASSIVE, FULL or RESTART */ 002191 int (*xBusy)(void*), /* Function to call when busy */ 002192 void *pBusyArg, /* Context argument for xBusyHandler */ 002193 int sync_flags, /* Flags for OsSync() (or 0) */ 002194 u8 *zBuf /* Temporary buffer to use */ 002195 ){ 002196 int rc = SQLITE_OK; /* Return code */ 002197 int szPage; /* Database page-size */ 002198 WalIterator *pIter = 0; /* Wal iterator context */ 002199 u32 iDbpage = 0; /* Next database page to write */ 002200 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 002201 u32 mxSafeFrame; /* Max frame that can be backfilled */ 002202 u32 mxPage; /* Max database page to write */ 002203 int i; /* Loop counter */ 002204 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 002205 002206 szPage = walPagesize(pWal); 002207 testcase( szPage<=32768 ); 002208 testcase( szPage>=65536 ); 002209 pInfo = walCkptInfo(pWal); 002210 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002211 002212 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 002213 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 002214 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 002215 002216 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 002217 ** safe to write into the database. Frames beyond mxSafeFrame might 002218 ** overwrite database pages that are in use by active readers and thus 002219 ** cannot be backfilled from the WAL. 002220 */ 002221 mxSafeFrame = pWal->hdr.mxFrame; 002222 mxPage = pWal->hdr.nPage; 002223 for(i=1; i<WAL_NREADER; i++){ 002224 u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 002225 if( mxSafeFrame>y ){ 002226 assert( y<=pWal->hdr.mxFrame ); 002227 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 002228 if( rc==SQLITE_OK ){ 002229 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 002230 AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; 002231 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 002232 }else if( rc==SQLITE_BUSY ){ 002233 mxSafeFrame = y; 002234 xBusy = 0; 002235 }else{ 002236 goto walcheckpoint_out; 002237 } 002238 } 002239 } 002240 002241 /* Allocate the iterator */ 002242 if( pInfo->nBackfill<mxSafeFrame ){ 002243 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 002244 assert( rc==SQLITE_OK || pIter==0 ); 002245 } 002246 002247 if( pIter 002248 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 002249 ){ 002250 u32 nBackfill = pInfo->nBackfill; 002251 pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; 002252 002253 /* Sync the WAL to disk */ 002254 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 002255 002256 /* If the database may grow as a result of this checkpoint, hint 002257 ** about the eventual size of the db file to the VFS layer. 002258 */ 002259 if( rc==SQLITE_OK ){ 002260 i64 nReq = ((i64)mxPage * szPage); 002261 i64 nSize; /* Current size of database file */ 002262 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 002263 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 002264 if( rc==SQLITE_OK && nSize<nReq ){ 002265 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 002266 /* If the size of the final database is larger than the current 002267 ** database plus the amount of data in the wal file, plus the 002268 ** maximum size of the pending-byte page (65536 bytes), then 002269 ** must be corruption somewhere. */ 002270 rc = SQLITE_CORRUPT_BKPT; 002271 }else{ 002272 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 002273 } 002274 } 002275 002276 } 002277 002278 /* Iterate through the contents of the WAL, copying data to the db file */ 002279 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 002280 i64 iOffset; 002281 assert( walFramePgno(pWal, iFrame)==iDbpage ); 002282 SEH_INJECT_FAULT; 002283 if( AtomicLoad(&db->u1.isInterrupted) ){ 002284 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 002285 break; 002286 } 002287 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 002288 continue; 002289 } 002290 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 002291 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 002292 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 002293 if( rc!=SQLITE_OK ) break; 002294 iOffset = (iDbpage-1)*(i64)szPage; 002295 testcase( IS_BIG_INT(iOffset) ); 002296 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 002297 if( rc!=SQLITE_OK ) break; 002298 } 002299 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 002300 002301 /* If work was actually accomplished... */ 002302 if( rc==SQLITE_OK ){ 002303 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 002304 i64 szDb = pWal->hdr.nPage*(i64)szPage; 002305 testcase( IS_BIG_INT(szDb) ); 002306 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 002307 if( rc==SQLITE_OK ){ 002308 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 002309 } 002310 } 002311 if( rc==SQLITE_OK ){ 002312 AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; 002313 } 002314 } 002315 002316 /* Release the reader lock held while backfilling */ 002317 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 002318 } 002319 002320 if( rc==SQLITE_BUSY ){ 002321 /* Reset the return code so as not to report a checkpoint failure 002322 ** just because there are active readers. */ 002323 rc = SQLITE_OK; 002324 } 002325 } 002326 002327 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 002328 ** entire wal file has been copied into the database file, then block 002329 ** until all readers have finished using the wal file. This ensures that 002330 ** the next process to write to the database restarts the wal file. 002331 */ 002332 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 002333 assert( pWal->writeLock ); 002334 SEH_INJECT_FAULT; 002335 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002336 rc = SQLITE_BUSY; 002337 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 002338 u32 salt1; 002339 sqlite3_randomness(4, &salt1); 002340 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 002341 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 002342 if( rc==SQLITE_OK ){ 002343 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 002344 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 002345 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 002346 ** truncates the log file to zero bytes just prior to a 002347 ** successful return. 002348 ** 002349 ** In theory, it might be safe to do this without updating the 002350 ** wal-index header in shared memory, as all subsequent reader or 002351 ** writer clients should see that the entire log file has been 002352 ** checkpointed and behave accordingly. This seems unsafe though, 002353 ** as it would leave the system in a state where the contents of 002354 ** the wal-index header do not match the contents of the 002355 ** file-system. To avoid this, update the wal-index header to 002356 ** indicate that the log file contains zero valid frames. */ 002357 walRestartHdr(pWal, salt1); 002358 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 002359 } 002360 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 002361 } 002362 } 002363 } 002364 002365 walcheckpoint_out: 002366 SEH_FREE_ON_ERROR(pIter, 0); 002367 walIteratorFree(pIter); 002368 return rc; 002369 } 002370 002371 /* 002372 ** If the WAL file is currently larger than nMax bytes in size, truncate 002373 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 002374 */ 002375 static void walLimitSize(Wal *pWal, i64 nMax){ 002376 i64 sz; 002377 int rx; 002378 sqlite3BeginBenignMalloc(); 002379 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 002380 if( rx==SQLITE_OK && (sz > nMax ) ){ 002381 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 002382 } 002383 sqlite3EndBenignMalloc(); 002384 if( rx ){ 002385 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 002386 } 002387 } 002388 002389 #ifdef SQLITE_USE_SEH 002390 /* 002391 ** This is the "standard" exception handler used in a few places to handle 002392 ** an exception thrown by reading from the *-shm mapping after it has become 002393 ** invalid in SQLITE_USE_SEH builds. It is used as follows: 002394 ** 002395 ** SEH_TRY { ... } 002396 ** SEH_EXCEPT( rc = walHandleException(pWal); ) 002397 ** 002398 ** This function does three things: 002399 ** 002400 ** 1) Determines the locks that should be held, based on the contents of 002401 ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other 002402 ** held locks are assumed to be transient locks that would have been 002403 ** released had the exception not been thrown and are dropped. 002404 ** 002405 ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). 002406 ** 002407 ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL 002408 ** 002409 ** 4) Returns SQLITE_IOERR. 002410 */ 002411 static int walHandleException(Wal *pWal){ 002412 if( pWal->exclusiveMode==0 ){ 002413 static const int S = 1; 002414 static const int E = (1<<SQLITE_SHM_NLOCK); 002415 int ii; 002416 u32 mUnlock = pWal->lockMask & ~( 002417 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002418 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002419 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002420 ); 002421 for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){ 002422 if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii); 002423 if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1); 002424 } 002425 } 002426 sqlite3_free(pWal->pFree); 002427 pWal->pFree = 0; 002428 if( pWal->pWiValue ){ 002429 pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; 002430 pWal->pWiValue = 0; 002431 } 002432 return SQLITE_IOERR_IN_PAGE; 002433 } 002434 002435 /* 002436 ** Assert that the Wal.lockMask mask, which indicates the locks held 002437 ** by the connection, is consistent with the Wal.readLock, Wal.writeLock 002438 ** and Wal.ckptLock variables. To be used as: 002439 ** 002440 ** assert( walAssertLockmask(pWal) ); 002441 */ 002442 static int walAssertLockmask(Wal *pWal){ 002443 if( pWal->exclusiveMode==0 ){ 002444 static const int S = 1; 002445 static const int E = (1<<SQLITE_SHM_NLOCK); 002446 u32 mExpect = ( 002447 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002448 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002449 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002450 #ifdef SQLITE_ENABLE_SNAPSHOT 002451 | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) 002452 #endif 002453 ); 002454 assert( mExpect==pWal->lockMask ); 002455 } 002456 return 1; 002457 } 002458 002459 /* 002460 ** Return and zero the "system error" field set when an 002461 ** EXCEPTION_IN_PAGE_ERROR exception is caught. 002462 */ 002463 int sqlite3WalSystemErrno(Wal *pWal){ 002464 int iRet = 0; 002465 if( pWal ){ 002466 iRet = pWal->iSysErrno; 002467 pWal->iSysErrno = 0; 002468 } 002469 return iRet; 002470 } 002471 002472 #else 002473 # define walAssertLockmask(x) 1 002474 #endif /* ifdef SQLITE_USE_SEH */ 002475 002476 /* 002477 ** Close a connection to a log file. 002478 */ 002479 int sqlite3WalClose( 002480 Wal *pWal, /* Wal to close */ 002481 sqlite3 *db, /* For interrupt flag */ 002482 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 002483 int nBuf, 002484 u8 *zBuf /* Buffer of at least nBuf bytes */ 002485 ){ 002486 int rc = SQLITE_OK; 002487 if( pWal ){ 002488 int isDelete = 0; /* True to unlink wal and wal-index files */ 002489 002490 assert( walAssertLockmask(pWal) ); 002491 002492 /* If an EXCLUSIVE lock can be obtained on the database file (using the 002493 ** ordinary, rollback-mode locking methods, this guarantees that the 002494 ** connection associated with this log file is the only connection to 002495 ** the database. In this case checkpoint the database and unlink both 002496 ** the wal and wal-index files. 002497 ** 002498 ** The EXCLUSIVE lock is not released before returning. 002499 */ 002500 if( zBuf!=0 002501 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 002502 ){ 002503 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 002504 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 002505 } 002506 rc = sqlite3WalCheckpoint(pWal, db, 002507 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 002508 ); 002509 if( rc==SQLITE_OK ){ 002510 int bPersist = -1; 002511 sqlite3OsFileControlHint( 002512 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 002513 ); 002514 if( bPersist!=1 ){ 002515 /* Try to delete the WAL file if the checkpoint completed and 002516 ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal 002517 ** mode (!bPersist) */ 002518 isDelete = 1; 002519 }else if( pWal->mxWalSize>=0 ){ 002520 /* Try to truncate the WAL file to zero bytes if the checkpoint 002521 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 002522 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 002523 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 002524 ** to zero bytes as truncating to the journal_size_limit might 002525 ** leave a corrupt WAL file on disk. */ 002526 walLimitSize(pWal, 0); 002527 } 002528 } 002529 } 002530 002531 walIndexClose(pWal, isDelete); 002532 sqlite3OsClose(pWal->pWalFd); 002533 if( isDelete ){ 002534 sqlite3BeginBenignMalloc(); 002535 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 002536 sqlite3EndBenignMalloc(); 002537 } 002538 WALTRACE(("WAL%p: closed\n", pWal)); 002539 sqlite3_free((void *)pWal->apWiData); 002540 sqlite3_free(pWal); 002541 } 002542 return rc; 002543 } 002544 002545 /* 002546 ** Try to read the wal-index header. Return 0 on success and 1 if 002547 ** there is a problem. 002548 ** 002549 ** The wal-index is in shared memory. Another thread or process might 002550 ** be writing the header at the same time this procedure is trying to 002551 ** read it, which might result in inconsistency. A dirty read is detected 002552 ** by verifying that both copies of the header are the same and also by 002553 ** a checksum on the header. 002554 ** 002555 ** If and only if the read is consistent and the header is different from 002556 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 002557 ** and *pChanged is set to 1. 002558 ** 002559 ** If the checksum cannot be verified return non-zero. If the header 002560 ** is read successfully and the checksum verified, return zero. 002561 */ 002562 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 002563 u32 aCksum[2]; /* Checksum on the header content */ 002564 WalIndexHdr h1, h2; /* Two copies of the header content */ 002565 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 002566 002567 /* The first page of the wal-index must be mapped at this point. */ 002568 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002569 002570 /* Read the header. This might happen concurrently with a write to the 002571 ** same area of shared memory on a different CPU in a SMP, 002572 ** meaning it is possible that an inconsistent snapshot is read 002573 ** from the file. If this happens, return non-zero. 002574 ** 002575 ** tag-20200519-1: 002576 ** There are two copies of the header at the beginning of the wal-index. 002577 ** When reading, read [0] first then [1]. Writes are in the reverse order. 002578 ** Memory barriers are used to prevent the compiler or the hardware from 002579 ** reordering the reads and writes. TSAN and similar tools can sometimes 002580 ** give false-positive warnings about these accesses because the tools do not 002581 ** account for the double-read and the memory barrier. The use of mutexes 002582 ** here would be problematic as the memory being accessed is potentially 002583 ** shared among multiple processes and not all mutex implementations work 002584 ** reliably in that environment. 002585 */ 002586 aHdr = walIndexHdr(pWal); 002587 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 002588 walShmBarrier(pWal); 002589 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 002590 002591 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 002592 return 1; /* Dirty read */ 002593 } 002594 if( h1.isInit==0 ){ 002595 return 1; /* Malformed header - probably all zeros */ 002596 } 002597 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 002598 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 002599 return 1; /* Checksum does not match */ 002600 } 002601 002602 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 002603 *pChanged = 1; 002604 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 002605 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002606 testcase( pWal->szPage<=32768 ); 002607 testcase( pWal->szPage>=65536 ); 002608 } 002609 002610 /* The header was successfully read. Return zero. */ 002611 return 0; 002612 } 002613 002614 /* 002615 ** This is the value that walTryBeginRead returns when it needs to 002616 ** be retried. 002617 */ 002618 #define WAL_RETRY (-1) 002619 002620 /* 002621 ** Read the wal-index header from the wal-index and into pWal->hdr. 002622 ** If the wal-header appears to be corrupt, try to reconstruct the 002623 ** wal-index from the WAL before returning. 002624 ** 002625 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 002626 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 002627 ** to 0. 002628 ** 002629 ** If the wal-index header is successfully read, return SQLITE_OK. 002630 ** Otherwise an SQLite error code. 002631 */ 002632 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 002633 int rc; /* Return code */ 002634 int badHdr; /* True if a header read failed */ 002635 volatile u32 *page0; /* Chunk of wal-index containing header */ 002636 002637 /* Ensure that page 0 of the wal-index (the page that contains the 002638 ** wal-index header) is mapped. Return early if an error occurs here. 002639 */ 002640 assert( pChanged ); 002641 rc = walIndexPage(pWal, 0, &page0); 002642 if( rc!=SQLITE_OK ){ 002643 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 002644 if( rc==SQLITE_READONLY_CANTINIT ){ 002645 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 002646 ** was openable but is not writable, and this thread is unable to 002647 ** confirm that another write-capable connection has the shared-memory 002648 ** open, and hence the content of the shared-memory is unreliable, 002649 ** since the shared-memory might be inconsistent with the WAL file 002650 ** and there is no writer on hand to fix it. */ 002651 assert( page0==0 ); 002652 assert( pWal->writeLock==0 ); 002653 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002654 pWal->bShmUnreliable = 1; 002655 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 002656 *pChanged = 1; 002657 }else{ 002658 return rc; /* Any other non-OK return is just an error */ 002659 } 002660 }else{ 002661 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 002662 ** is zero, which prevents the SHM from growing */ 002663 testcase( page0!=0 ); 002664 } 002665 assert( page0!=0 || pWal->writeLock==0 ); 002666 002667 /* If the first page of the wal-index has been mapped, try to read the 002668 ** wal-index header immediately, without holding any lock. This usually 002669 ** works, but may fail if the wal-index header is corrupt or currently 002670 ** being modified by another thread or process. 002671 */ 002672 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 002673 002674 /* If the first attempt failed, it might have been due to a race 002675 ** with a writer. So get a WRITE lock and try again. 002676 */ 002677 if( badHdr ){ 002678 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 002679 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 002680 walUnlockShared(pWal, WAL_WRITE_LOCK); 002681 rc = SQLITE_READONLY_RECOVERY; 002682 } 002683 }else{ 002684 int bWriteLock = pWal->writeLock; 002685 if( bWriteLock 002686 || SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) 002687 ){ 002688 pWal->writeLock = 1; 002689 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 002690 badHdr = walIndexTryHdr(pWal, pChanged); 002691 if( badHdr ){ 002692 /* If the wal-index header is still malformed even while holding 002693 ** a WRITE lock, it can only mean that the header is corrupted and 002694 ** needs to be reconstructed. So run recovery to do exactly that. 002695 ** Disable blocking locks first. */ 002696 walDisableBlocking(pWal); 002697 rc = walIndexRecover(pWal); 002698 *pChanged = 1; 002699 } 002700 } 002701 if( bWriteLock==0 ){ 002702 pWal->writeLock = 0; 002703 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002704 } 002705 } 002706 } 002707 } 002708 002709 /* If the header is read successfully, check the version number to make 002710 ** sure the wal-index was not constructed with some future format that 002711 ** this version of SQLite cannot understand. 002712 */ 002713 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 002714 rc = SQLITE_CANTOPEN_BKPT; 002715 } 002716 if( pWal->bShmUnreliable ){ 002717 if( rc!=SQLITE_OK ){ 002718 walIndexClose(pWal, 0); 002719 pWal->bShmUnreliable = 0; 002720 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 002721 /* walIndexRecover() might have returned SHORT_READ if a concurrent 002722 ** writer truncated the WAL out from under it. If that happens, it 002723 ** indicates that a writer has fixed the SHM file for us, so retry */ 002724 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 002725 } 002726 pWal->exclusiveMode = WAL_NORMAL_MODE; 002727 } 002728 002729 return rc; 002730 } 002731 002732 /* 002733 ** Open a transaction in a connection where the shared-memory is read-only 002734 ** and where we cannot verify that there is a separate write-capable connection 002735 ** on hand to keep the shared-memory up-to-date with the WAL file. 002736 ** 002737 ** This can happen, for example, when the shared-memory is implemented by 002738 ** memory-mapping a *-shm file, where a prior writer has shut down and 002739 ** left the *-shm file on disk, and now the present connection is trying 002740 ** to use that database but lacks write permission on the *-shm file. 002741 ** Other scenarios are also possible, depending on the VFS implementation. 002742 ** 002743 ** Precondition: 002744 ** 002745 ** The *-wal file has been read and an appropriate wal-index has been 002746 ** constructed in pWal->apWiData[] using heap memory instead of shared 002747 ** memory. 002748 ** 002749 ** If this function returns SQLITE_OK, then the read transaction has 002750 ** been successfully opened. In this case output variable (*pChanged) 002751 ** is set to true before returning if the caller should discard the 002752 ** contents of the page cache before proceeding. Or, if it returns 002753 ** WAL_RETRY, then the heap memory wal-index has been discarded and 002754 ** the caller should retry opening the read transaction from the 002755 ** beginning (including attempting to map the *-shm file). 002756 ** 002757 ** If an error occurs, an SQLite error code is returned. 002758 */ 002759 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 002760 i64 szWal; /* Size of wal file on disk in bytes */ 002761 i64 iOffset; /* Current offset when reading wal file */ 002762 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 002763 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 002764 int szFrame; /* Number of bytes in buffer aFrame[] */ 002765 u8 *aData; /* Pointer to data part of aFrame buffer */ 002766 volatile void *pDummy; /* Dummy argument for xShmMap */ 002767 int rc; /* Return code */ 002768 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 002769 002770 assert( pWal->bShmUnreliable ); 002771 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002772 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002773 002774 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 002775 ** writers from running a checkpoint, but does not stop them 002776 ** from running recovery. */ 002777 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 002778 if( rc!=SQLITE_OK ){ 002779 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 002780 goto begin_unreliable_shm_out; 002781 } 002782 pWal->readLock = 0; 002783 002784 /* Check to see if a separate writer has attached to the shared-memory area, 002785 ** thus making the shared-memory "reliable" again. Do this by invoking 002786 ** the xShmMap() routine of the VFS and looking to see if the return 002787 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 002788 ** 002789 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 002790 ** cause the heap-memory WAL-index to be discarded and the actual 002791 ** shared memory to be used in its place. 002792 ** 002793 ** This step is important because, even though this connection is holding 002794 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 002795 ** have already checkpointed the WAL file and, while the current 002796 ** is active, wrap the WAL and start overwriting frames that this 002797 ** process wants to use. 002798 ** 002799 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 002800 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 002801 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 002802 ** even if some external agent does a "chmod" to make the shared-memory 002803 ** writable by us, until sqlite3OsShmUnmap() has been called. 002804 ** This is a requirement on the VFS implementation. 002805 */ 002806 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 002807 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 002808 if( rc!=SQLITE_READONLY_CANTINIT ){ 002809 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 002810 goto begin_unreliable_shm_out; 002811 } 002812 002813 /* We reach this point only if the real shared-memory is still unreliable. 002814 ** Assume the in-memory WAL-index substitute is correct and load it 002815 ** into pWal->hdr. 002816 */ 002817 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 002818 002819 /* Make sure some writer hasn't come in and changed the WAL file out 002820 ** from under us, then disconnected, while we were not looking. 002821 */ 002822 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 002823 if( rc!=SQLITE_OK ){ 002824 goto begin_unreliable_shm_out; 002825 } 002826 if( szWal<WAL_HDRSIZE ){ 002827 /* If the wal file is too small to contain a wal-header and the 002828 ** wal-index header has mxFrame==0, then it must be safe to proceed 002829 ** reading the database file only. However, the page cache cannot 002830 ** be trusted, as a read/write connection may have connected, written 002831 ** the db, run a checkpoint, truncated the wal file and disconnected 002832 ** since this client's last read transaction. */ 002833 *pChanged = 1; 002834 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 002835 goto begin_unreliable_shm_out; 002836 } 002837 002838 /* Check the salt keys at the start of the wal file still match. */ 002839 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 002840 if( rc!=SQLITE_OK ){ 002841 goto begin_unreliable_shm_out; 002842 } 002843 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 002844 /* Some writer has wrapped the WAL file while we were not looking. 002845 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 002846 ** rebuilt. */ 002847 rc = WAL_RETRY; 002848 goto begin_unreliable_shm_out; 002849 } 002850 002851 /* Allocate a buffer to read frames into */ 002852 assert( (pWal->szPage & (pWal->szPage-1))==0 ); 002853 assert( pWal->szPage>=512 && pWal->szPage<=65536 ); 002854 szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; 002855 aFrame = (u8 *)sqlite3_malloc64(szFrame); 002856 if( aFrame==0 ){ 002857 rc = SQLITE_NOMEM_BKPT; 002858 goto begin_unreliable_shm_out; 002859 } 002860 aData = &aFrame[WAL_FRAME_HDRSIZE]; 002861 002862 /* Check to see if a complete transaction has been appended to the 002863 ** wal file since the heap-memory wal-index was created. If so, the 002864 ** heap-memory wal-index is discarded and WAL_RETRY returned to 002865 ** the caller. */ 002866 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 002867 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 002868 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); 002869 iOffset+szFrame<=szWal; 002870 iOffset+=szFrame 002871 ){ 002872 u32 pgno; /* Database page number for frame */ 002873 u32 nTruncate; /* dbsize field from frame header */ 002874 002875 /* Read and decode the next log frame. */ 002876 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 002877 if( rc!=SQLITE_OK ) break; 002878 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 002879 002880 /* If nTruncate is non-zero, then a complete transaction has been 002881 ** appended to this wal file. Set rc to WAL_RETRY and break out of 002882 ** the loop. */ 002883 if( nTruncate ){ 002884 rc = WAL_RETRY; 002885 break; 002886 } 002887 } 002888 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 002889 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 002890 002891 begin_unreliable_shm_out: 002892 sqlite3_free(aFrame); 002893 if( rc!=SQLITE_OK ){ 002894 int i; 002895 for(i=0; i<pWal->nWiData; i++){ 002896 sqlite3_free((void*)pWal->apWiData[i]); 002897 pWal->apWiData[i] = 0; 002898 } 002899 pWal->bShmUnreliable = 0; 002900 sqlite3WalEndReadTransaction(pWal); 002901 *pChanged = 1; 002902 } 002903 return rc; 002904 } 002905 002906 /* 002907 ** The final argument passed to walTryBeginRead() is of type (int*). The 002908 ** caller should invoke walTryBeginRead as follows: 002909 ** 002910 ** int cnt = 0; 002911 ** do { 002912 ** rc = walTryBeginRead(..., &cnt); 002913 ** }while( rc==WAL_RETRY ); 002914 ** 002915 ** The final value of "cnt" is of no use to the caller. It is used by 002916 ** the implementation of walTryBeginRead() as follows: 002917 ** 002918 ** + Each time walTryBeginRead() is called, it is incremented. Once 002919 ** it reaches WAL_RETRY_PROTOCOL_LIMIT - indicating that walTryBeginRead() 002920 ** has many times been invoked and failed with WAL_RETRY - walTryBeginRead() 002921 ** returns SQLITE_PROTOCOL. 002922 ** 002923 ** + If SQLITE_ENABLE_SETLK_TIMEOUT is defined and walTryBeginRead() failed 002924 ** because a blocking lock timed out (SQLITE_BUSY_TIMEOUT from the OS 002925 ** layer), the WAL_RETRY_BLOCKED_MASK bit is set in "cnt". In this case 002926 ** the next invocation of walTryBeginRead() may omit an expected call to 002927 ** sqlite3OsSleep(). There has already been a delay when the previous call 002928 ** waited on a lock. 002929 */ 002930 #define WAL_RETRY_PROTOCOL_LIMIT 100 002931 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002932 # define WAL_RETRY_BLOCKED_MASK 0x10000000 002933 #else 002934 # define WAL_RETRY_BLOCKED_MASK 0 002935 #endif 002936 002937 /* 002938 ** Attempt to start a read transaction. This might fail due to a race or 002939 ** other transient condition. When that happens, it returns WAL_RETRY to 002940 ** indicate to the caller that it is safe to retry immediately. 002941 ** 002942 ** On success return SQLITE_OK. On a permanent failure (such an 002943 ** I/O error or an SQLITE_BUSY because another process is running 002944 ** recovery) return a positive error code. 002945 ** 002946 ** The useWal parameter is true to force the use of the WAL and disable 002947 ** the case where the WAL is bypassed because it has been completely 002948 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 002949 ** to make a copy of the wal-index header into pWal->hdr. If the 002950 ** wal-index header has changed, *pChanged is set to 1 (as an indication 002951 ** to the caller that the local page cache is obsolete and needs to be 002952 ** flushed.) When useWal==1, the wal-index header is assumed to already 002953 ** be loaded and the pChanged parameter is unused. 002954 ** 002955 ** The caller must set the cnt parameter to the number of prior calls to 002956 ** this routine during the current read attempt that returned WAL_RETRY. 002957 ** This routine will start taking more aggressive measures to clear the 002958 ** race conditions after multiple WAL_RETRY returns, and after an excessive 002959 ** number of errors will ultimately return SQLITE_PROTOCOL. The 002960 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 002961 ** and is not honoring the locking protocol. There is a vanishingly small 002962 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 002963 ** bad luck when there is lots of contention for the wal-index, but that 002964 ** possibility is so small that it can be safely neglected, we believe. 002965 ** 002966 ** On success, this routine obtains a read lock on 002967 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 002968 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 002969 ** that means the Wal does not hold any read lock. The reader must not 002970 ** access any database page that is modified by a WAL frame up to and 002971 ** including frame number aReadMark[pWal->readLock]. The reader will 002972 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 002973 ** Or if pWal->readLock==0, then the reader will ignore the WAL 002974 ** completely and get all content directly from the database file. 002975 ** If the useWal parameter is 1 then the WAL will never be ignored and 002976 ** this routine will always set pWal->readLock>0 on success. 002977 ** When the read transaction is completed, the caller must release the 002978 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 002979 ** 002980 ** This routine uses the nBackfill and aReadMark[] fields of the header 002981 ** to select a particular WAL_READ_LOCK() that strives to let the 002982 ** checkpoint process do as much work as possible. This routine might 002983 ** update values of the aReadMark[] array in the header, but if it does 002984 ** so it takes care to hold an exclusive lock on the corresponding 002985 ** WAL_READ_LOCK() while changing values. 002986 */ 002987 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){ 002988 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 002989 u32 mxReadMark; /* Largest aReadMark[] value */ 002990 int mxI; /* Index of largest aReadMark[] value */ 002991 int i; /* Loop counter */ 002992 int rc = SQLITE_OK; /* Return code */ 002993 u32 mxFrame; /* Wal frame to lock to */ 002994 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002995 int nBlockTmout = 0; 002996 #endif 002997 002998 assert( pWal->readLock<0 ); /* Not currently locked */ 002999 003000 /* useWal may only be set for read/write connections */ 003001 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 003002 003003 /* Take steps to avoid spinning forever if there is a protocol error. 003004 ** 003005 ** Circumstances that cause a RETRY should only last for the briefest 003006 ** instances of time. No I/O or other system calls are done while the 003007 ** locks are held, so the locks should not be held for very long. But 003008 ** if we are unlucky, another process that is holding a lock might get 003009 ** paged out or take a page-fault that is time-consuming to resolve, 003010 ** during the few nanoseconds that it is holding the lock. In that case, 003011 ** it might take longer than normal for the lock to free. 003012 ** 003013 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 003014 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 003015 ** is more of a scheduler yield than an actual delay. But on the 10th 003016 ** an subsequent retries, the delays start becoming longer and longer, 003017 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 003018 ** The total delay time before giving up is less than 10 seconds. 003019 */ 003020 (*pCnt)++; 003021 if( *pCnt>5 ){ 003022 int nDelay = 1; /* Pause time in microseconds */ 003023 int cnt = (*pCnt & ~WAL_RETRY_BLOCKED_MASK); 003024 if( cnt>WAL_RETRY_PROTOCOL_LIMIT ){ 003025 VVA_ONLY( pWal->lockError = 1; ) 003026 return SQLITE_PROTOCOL; 003027 } 003028 if( *pCnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 003029 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003030 /* In SQLITE_ENABLE_SETLK_TIMEOUT builds, configure the file-descriptor 003031 ** to block for locks for approximately nDelay us. This affects three 003032 ** locks: (a) the shared lock taken on the DMS slot in os_unix.c (if 003033 ** using os_unix.c), (b) the WRITER lock taken in walIndexReadHdr() if the 003034 ** first attempted read fails, and (c) the shared lock taken on the 003035 ** read-mark. 003036 ** 003037 ** If the previous call failed due to an SQLITE_BUSY_TIMEOUT error, 003038 ** then sleep for the minimum of 1us. The previous call already provided 003039 ** an extra delay while it was blocking on the lock. 003040 */ 003041 nBlockTmout = (nDelay+998) / 1000; 003042 if( !useWal && walEnableBlockingMs(pWal, nBlockTmout) ){ 003043 if( *pCnt & WAL_RETRY_BLOCKED_MASK ) nDelay = 1; 003044 } 003045 #endif 003046 sqlite3OsSleep(pWal->pVfs, nDelay); 003047 *pCnt &= ~WAL_RETRY_BLOCKED_MASK; 003048 } 003049 003050 if( !useWal ){ 003051 assert( rc==SQLITE_OK ); 003052 if( pWal->bShmUnreliable==0 ){ 003053 rc = walIndexReadHdr(pWal, pChanged); 003054 } 003055 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003056 walDisableBlocking(pWal); 003057 if( rc==SQLITE_BUSY_TIMEOUT ){ 003058 rc = SQLITE_BUSY; 003059 *pCnt |= WAL_RETRY_BLOCKED_MASK; 003060 } 003061 #endif 003062 if( rc==SQLITE_BUSY ){ 003063 /* If there is not a recovery running in another thread or process 003064 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 003065 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 003066 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 003067 ** would be technically correct. But the race is benign since with 003068 ** WAL_RETRY this routine will be called again and will probably be 003069 ** right on the second iteration. 003070 */ 003071 if( pWal->apWiData[0]==0 ){ 003072 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 003073 ** We assume this is a transient condition, so return WAL_RETRY. The 003074 ** xShmMap() implementation used by the default unix and win32 VFS 003075 ** modules may return SQLITE_BUSY due to a race condition in the 003076 ** code that determines whether or not the shared-memory region 003077 ** must be zeroed before the requested page is returned. 003078 */ 003079 rc = WAL_RETRY; 003080 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 003081 walUnlockShared(pWal, WAL_RECOVER_LOCK); 003082 rc = WAL_RETRY; 003083 }else if( rc==SQLITE_BUSY ){ 003084 rc = SQLITE_BUSY_RECOVERY; 003085 } 003086 } 003087 if( rc!=SQLITE_OK ){ 003088 return rc; 003089 } 003090 else if( pWal->bShmUnreliable ){ 003091 return walBeginShmUnreliable(pWal, pChanged); 003092 } 003093 } 003094 003095 assert( pWal->nWiData>0 ); 003096 assert( pWal->apWiData[0]!=0 ); 003097 pInfo = walCkptInfo(pWal); 003098 SEH_INJECT_FAULT; 003099 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 003100 #ifdef SQLITE_ENABLE_SNAPSHOT 003101 && ((pWal->bGetSnapshot==0 && pWal->pSnapshot==0) || pWal->hdr.mxFrame==0) 003102 #endif 003103 ){ 003104 /* The WAL has been completely backfilled (or it is empty). 003105 ** and can be safely ignored. 003106 */ 003107 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 003108 walShmBarrier(pWal); 003109 if( rc==SQLITE_OK ){ 003110 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 003111 /* It is not safe to allow the reader to continue here if frames 003112 ** may have been appended to the log before READ_LOCK(0) was obtained. 003113 ** When holding READ_LOCK(0), the reader ignores the entire log file, 003114 ** which implies that the database file contains a trustworthy 003115 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 003116 ** happening, this is usually correct. 003117 ** 003118 ** However, if frames have been appended to the log (or if the log 003119 ** is wrapped and written for that matter) before the READ_LOCK(0) 003120 ** is obtained, that is not necessarily true. A checkpointer may 003121 ** have started to backfill the appended frames but crashed before 003122 ** it finished. Leaving a corrupt image in the database file. 003123 */ 003124 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003125 return WAL_RETRY; 003126 } 003127 pWal->readLock = 0; 003128 return SQLITE_OK; 003129 }else if( rc!=SQLITE_BUSY ){ 003130 return rc; 003131 } 003132 } 003133 003134 /* If we get this far, it means that the reader will want to use 003135 ** the WAL to get at content from recent commits. The job now is 003136 ** to select one of the aReadMark[] entries that is closest to 003137 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 003138 */ 003139 mxReadMark = 0; 003140 mxI = 0; 003141 mxFrame = pWal->hdr.mxFrame; 003142 #ifdef SQLITE_ENABLE_SNAPSHOT 003143 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 003144 mxFrame = pWal->pSnapshot->mxFrame; 003145 } 003146 #endif 003147 for(i=1; i<WAL_NREADER; i++){ 003148 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 003149 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 003150 assert( thisMark!=READMARK_NOT_USED ); 003151 mxReadMark = thisMark; 003152 mxI = i; 003153 } 003154 } 003155 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 003156 && (mxReadMark<mxFrame || mxI==0) 003157 ){ 003158 for(i=1; i<WAL_NREADER; i++){ 003159 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 003160 if( rc==SQLITE_OK ){ 003161 AtomicStore(pInfo->aReadMark+i,mxFrame); 003162 mxReadMark = mxFrame; 003163 mxI = i; 003164 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 003165 break; 003166 }else if( rc!=SQLITE_BUSY ){ 003167 return rc; 003168 } 003169 } 003170 } 003171 if( mxI==0 ){ 003172 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 003173 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 003174 } 003175 003176 (void)walEnableBlockingMs(pWal, nBlockTmout); 003177 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 003178 walDisableBlocking(pWal); 003179 if( rc ){ 003180 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003181 if( rc==SQLITE_BUSY_TIMEOUT ){ 003182 *pCnt |= WAL_RETRY_BLOCKED_MASK; 003183 } 003184 #else 003185 assert( rc!=SQLITE_BUSY_TIMEOUT ); 003186 #endif 003187 assert( (rc&0xFF)!=SQLITE_BUSY||rc==SQLITE_BUSY||rc==SQLITE_BUSY_TIMEOUT ); 003188 return (rc&0xFF)==SQLITE_BUSY ? WAL_RETRY : rc; 003189 } 003190 /* Now that the read-lock has been obtained, check that neither the 003191 ** value in the aReadMark[] array or the contents of the wal-index 003192 ** header have changed. 003193 ** 003194 ** It is necessary to check that the wal-index header did not change 003195 ** between the time it was read and when the shared-lock was obtained 003196 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 003197 ** that the log file may have been wrapped by a writer, or that frames 003198 ** that occur later in the log than pWal->hdr.mxFrame may have been 003199 ** copied into the database by a checkpointer. If either of these things 003200 ** happened, then reading the database with the current value of 003201 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 003202 ** instead. 003203 ** 003204 ** Before checking that the live wal-index header has not changed 003205 ** since it was read, set Wal.minFrame to the first frame in the wal 003206 ** file that has not yet been checkpointed. This client will not need 003207 ** to read any frames earlier than minFrame from the wal file - they 003208 ** can be safely read directly from the database file. 003209 ** 003210 ** Because a ShmBarrier() call is made between taking the copy of 003211 ** nBackfill and checking that the wal-header in shared-memory still 003212 ** matches the one cached in pWal->hdr, it is guaranteed that the 003213 ** checkpointer that set nBackfill was not working with a wal-index 003214 ** header newer than that cached in pWal->hdr. If it were, that could 003215 ** cause a problem. The checkpointer could omit to checkpoint 003216 ** a version of page X that lies before pWal->minFrame (call that version 003217 ** A) on the basis that there is a newer version (version B) of the same 003218 ** page later in the wal file. But if version B happens to like past 003219 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 003220 ** that it can read version A from the database file. However, since 003221 ** we can guarantee that the checkpointer that set nBackfill could not 003222 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 003223 */ 003224 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; 003225 walShmBarrier(pWal); 003226 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 003227 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 003228 ){ 003229 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 003230 return WAL_RETRY; 003231 }else{ 003232 assert( mxReadMark<=pWal->hdr.mxFrame ); 003233 pWal->readLock = (i16)mxI; 003234 } 003235 return rc; 003236 } 003237 003238 #ifdef SQLITE_ENABLE_SNAPSHOT 003239 /* 003240 ** This function does the work of sqlite3WalSnapshotRecover(). 003241 */ 003242 static int walSnapshotRecover( 003243 Wal *pWal, /* WAL handle */ 003244 void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ 003245 void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ 003246 ){ 003247 int szPage = (int)pWal->szPage; 003248 int rc; 003249 i64 szDb; /* Size of db file in bytes */ 003250 003251 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 003252 if( rc==SQLITE_OK ){ 003253 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003254 u32 i = pInfo->nBackfillAttempted; 003255 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 003256 WalHashLoc sLoc; /* Hash table location */ 003257 u32 pgno; /* Page number in db file */ 003258 i64 iDbOff; /* Offset of db file entry */ 003259 i64 iWalOff; /* Offset of wal file entry */ 003260 003261 rc = walHashGet(pWal, walFramePage(i), &sLoc); 003262 if( rc!=SQLITE_OK ) break; 003263 assert( i - sLoc.iZero - 1 >=0 ); 003264 pgno = sLoc.aPgno[i-sLoc.iZero-1]; 003265 iDbOff = (i64)(pgno-1) * szPage; 003266 003267 if( iDbOff+szPage<=szDb ){ 003268 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 003269 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 003270 003271 if( rc==SQLITE_OK ){ 003272 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 003273 } 003274 003275 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 003276 break; 003277 } 003278 } 003279 003280 pInfo->nBackfillAttempted = i-1; 003281 } 003282 } 003283 003284 return rc; 003285 } 003286 003287 /* 003288 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 003289 ** variable so that older snapshots can be accessed. To do this, loop 003290 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 003291 ** comparing their content to the corresponding page with the database 003292 ** file, if any. Set nBackfillAttempted to the frame number of the 003293 ** first frame for which the wal file content matches the db file. 003294 ** 003295 ** This is only really safe if the file-system is such that any page 003296 ** writes made by earlier checkpointers were atomic operations, which 003297 ** is not always true. It is also possible that nBackfillAttempted 003298 ** may be left set to a value larger than expected, if a wal frame 003299 ** contains content that duplicate of an earlier version of the same 003300 ** page. 003301 ** 003302 ** SQLITE_OK is returned if successful, or an SQLite error code if an 003303 ** error occurs. It is not an error if nBackfillAttempted cannot be 003304 ** decreased at all. 003305 */ 003306 int sqlite3WalSnapshotRecover(Wal *pWal){ 003307 int rc; 003308 003309 assert( pWal->readLock>=0 ); 003310 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 003311 if( rc==SQLITE_OK ){ 003312 void *pBuf1 = sqlite3_malloc(pWal->szPage); 003313 void *pBuf2 = sqlite3_malloc(pWal->szPage); 003314 if( pBuf1==0 || pBuf2==0 ){ 003315 rc = SQLITE_NOMEM; 003316 }else{ 003317 pWal->ckptLock = 1; 003318 SEH_TRY { 003319 rc = walSnapshotRecover(pWal, pBuf1, pBuf2); 003320 } 003321 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003322 pWal->ckptLock = 0; 003323 } 003324 003325 sqlite3_free(pBuf1); 003326 sqlite3_free(pBuf2); 003327 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 003328 } 003329 003330 return rc; 003331 } 003332 #endif /* SQLITE_ENABLE_SNAPSHOT */ 003333 003334 /* 003335 ** This function does the work of sqlite3WalBeginReadTransaction() (see 003336 ** below). That function simply calls this one inside an SEH_TRY{...} block. 003337 */ 003338 static int walBeginReadTransaction(Wal *pWal, int *pChanged){ 003339 int rc; /* Return code */ 003340 int cnt = 0; /* Number of TryBeginRead attempts */ 003341 #ifdef SQLITE_ENABLE_SNAPSHOT 003342 int ckptLock = 0; 003343 int bChanged = 0; 003344 WalIndexHdr *pSnapshot = pWal->pSnapshot; 003345 #endif 003346 003347 assert( pWal->ckptLock==0 ); 003348 assert( pWal->nSehTry>0 ); 003349 003350 #ifdef SQLITE_ENABLE_SNAPSHOT 003351 if( pSnapshot ){ 003352 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003353 bChanged = 1; 003354 } 003355 003356 /* It is possible that there is a checkpointer thread running 003357 ** concurrent with this code. If this is the case, it may be that the 003358 ** checkpointer has already determined that it will checkpoint 003359 ** snapshot X, where X is later in the wal file than pSnapshot, but 003360 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 003361 ** its intent. To avoid the race condition this leads to, ensure that 003362 ** there is no checkpointer process by taking a shared CKPT lock 003363 ** before checking pInfo->nBackfillAttempted. */ 003364 (void)walEnableBlocking(pWal); 003365 rc = walLockShared(pWal, WAL_CKPT_LOCK); 003366 walDisableBlocking(pWal); 003367 003368 if( rc!=SQLITE_OK ){ 003369 return rc; 003370 } 003371 ckptLock = 1; 003372 } 003373 #endif 003374 003375 do{ 003376 rc = walTryBeginRead(pWal, pChanged, 0, &cnt); 003377 }while( rc==WAL_RETRY ); 003378 testcase( (rc&0xff)==SQLITE_BUSY ); 003379 testcase( (rc&0xff)==SQLITE_IOERR ); 003380 testcase( rc==SQLITE_PROTOCOL ); 003381 testcase( rc==SQLITE_OK ); 003382 003383 #ifdef SQLITE_ENABLE_SNAPSHOT 003384 if( rc==SQLITE_OK ){ 003385 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003386 /* At this point the client has a lock on an aReadMark[] slot holding 003387 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 003388 ** is populated with the wal-index header corresponding to the head 003389 ** of the wal file. Verify that pSnapshot is still valid before 003390 ** continuing. Reasons why pSnapshot might no longer be valid: 003391 ** 003392 ** (1) The WAL file has been reset since the snapshot was taken. 003393 ** In this case, the salt will have changed. 003394 ** 003395 ** (2) A checkpoint as been attempted that wrote frames past 003396 ** pSnapshot->mxFrame into the database file. Note that the 003397 ** checkpoint need not have completed for this to cause problems. 003398 */ 003399 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003400 003401 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 003402 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 003403 003404 /* Check that the wal file has not been wrapped. Assuming that it has 003405 ** not, also check that no checkpointer has attempted to checkpoint any 003406 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 003407 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 003408 ** with *pSnapshot and set *pChanged as appropriate for opening the 003409 ** snapshot. */ 003410 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 003411 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 003412 ){ 003413 assert( pWal->readLock>0 ); 003414 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 003415 *pChanged = bChanged; 003416 }else{ 003417 rc = SQLITE_ERROR_SNAPSHOT; 003418 } 003419 003420 /* A client using a non-current snapshot may not ignore any frames 003421 ** from the start of the wal file. This is because, for a system 003422 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 003423 ** have omitted to checkpoint a frame earlier than minFrame in 003424 ** the file because there exists a frame after iSnapshot that 003425 ** is the same database page. */ 003426 pWal->minFrame = 1; 003427 003428 if( rc!=SQLITE_OK ){ 003429 sqlite3WalEndReadTransaction(pWal); 003430 } 003431 } 003432 } 003433 003434 /* Release the shared CKPT lock obtained above. */ 003435 if( ckptLock ){ 003436 assert( pSnapshot ); 003437 walUnlockShared(pWal, WAL_CKPT_LOCK); 003438 } 003439 #endif 003440 return rc; 003441 } 003442 003443 /* 003444 ** Begin a read transaction on the database. 003445 ** 003446 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 003447 ** it takes a snapshot of the state of the WAL and wal-index for the current 003448 ** instant in time. The current thread will continue to use this snapshot. 003449 ** Other threads might append new content to the WAL and wal-index but 003450 ** that extra content is ignored by the current thread. 003451 ** 003452 ** If the database contents have changes since the previous read 003453 ** transaction, then *pChanged is set to 1 before returning. The 003454 ** Pager layer will use this to know that its cache is stale and 003455 ** needs to be flushed. 003456 */ 003457 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 003458 int rc; 003459 SEH_TRY { 003460 rc = walBeginReadTransaction(pWal, pChanged); 003461 } 003462 SEH_EXCEPT( rc = walHandleException(pWal); ) 003463 return rc; 003464 } 003465 003466 /* 003467 ** Finish with a read transaction. All this does is release the 003468 ** read-lock. 003469 */ 003470 void sqlite3WalEndReadTransaction(Wal *pWal){ 003471 sqlite3WalEndWriteTransaction(pWal); 003472 if( pWal->readLock>=0 ){ 003473 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 003474 pWal->readLock = -1; 003475 } 003476 } 003477 003478 /* 003479 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003480 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003481 ** to zero. 003482 ** 003483 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003484 ** error does occur, the final value of *piRead is undefined. 003485 */ 003486 static int walFindFrame( 003487 Wal *pWal, /* WAL handle */ 003488 Pgno pgno, /* Database page number to read data for */ 003489 u32 *piRead /* OUT: Frame number (or zero) */ 003490 ){ 003491 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 003492 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 003493 int iHash; /* Used to loop through N hash tables */ 003494 int iMinHash; 003495 003496 /* This routine is only be called from within a read transaction. */ 003497 assert( pWal->readLock>=0 || pWal->lockError ); 003498 003499 /* If the "last page" field of the wal-index header snapshot is 0, then 003500 ** no data will be read from the wal under any circumstances. Return early 003501 ** in this case as an optimization. Likewise, if pWal->readLock==0, 003502 ** then the WAL is ignored by the reader so return early, as if the 003503 ** WAL were empty. 003504 */ 003505 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 003506 *piRead = 0; 003507 return SQLITE_OK; 003508 } 003509 003510 /* Search the hash table or tables for an entry matching page number 003511 ** pgno. Each iteration of the following for() loop searches one 003512 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 003513 ** 003514 ** This code might run concurrently to the code in walIndexAppend() 003515 ** that adds entries to the wal-index (and possibly to this hash 003516 ** table). This means the value just read from the hash 003517 ** slot (aHash[iKey]) may have been added before or after the 003518 ** current read transaction was opened. Values added after the 003519 ** read transaction was opened may have been written incorrectly - 003520 ** i.e. these slots may contain garbage data. However, we assume 003521 ** that any slots written before the current read transaction was 003522 ** opened remain unmodified. 003523 ** 003524 ** For the reasons above, the if(...) condition featured in the inner 003525 ** loop of the following block is more stringent that would be required 003526 ** if we had exclusive access to the hash-table: 003527 ** 003528 ** (aPgno[iFrame]==pgno): 003529 ** This condition filters out normal hash-table collisions. 003530 ** 003531 ** (iFrame<=iLast): 003532 ** This condition filters out entries that were added to the hash 003533 ** table after the current read-transaction had started. 003534 */ 003535 iMinHash = walFramePage(pWal->minFrame); 003536 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 003537 WalHashLoc sLoc; /* Hash table location */ 003538 int iKey; /* Hash slot index */ 003539 int nCollide; /* Number of hash collisions remaining */ 003540 int rc; /* Error code */ 003541 u32 iH; 003542 003543 rc = walHashGet(pWal, iHash, &sLoc); 003544 if( rc!=SQLITE_OK ){ 003545 return rc; 003546 } 003547 nCollide = HASHTABLE_NSLOT; 003548 iKey = walHash(pgno); 003549 SEH_INJECT_FAULT; 003550 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 003551 u32 iFrame = iH + sLoc.iZero; 003552 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ 003553 assert( iFrame>iRead || CORRUPT_DB ); 003554 iRead = iFrame; 003555 } 003556 if( (nCollide--)==0 ){ 003557 *piRead = 0; 003558 return SQLITE_CORRUPT_BKPT; 003559 } 003560 iKey = walNextHash(iKey); 003561 } 003562 if( iRead ) break; 003563 } 003564 003565 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 003566 /* If expensive assert() statements are available, do a linear search 003567 ** of the wal-index file content. Make sure the results agree with the 003568 ** result obtained using the hash indexes above. */ 003569 { 003570 u32 iRead2 = 0; 003571 u32 iTest; 003572 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 003573 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 003574 if( walFramePgno(pWal, iTest)==pgno ){ 003575 iRead2 = iTest; 003576 break; 003577 } 003578 } 003579 assert( iRead==iRead2 ); 003580 } 003581 #endif 003582 003583 *piRead = iRead; 003584 return SQLITE_OK; 003585 } 003586 003587 /* 003588 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003589 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003590 ** to zero. 003591 ** 003592 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003593 ** error does occur, the final value of *piRead is undefined. 003594 ** 003595 ** The difference between this function and walFindFrame() is that this 003596 ** function wraps walFindFrame() in an SEH_TRY{...} block. 003597 */ 003598 int sqlite3WalFindFrame( 003599 Wal *pWal, /* WAL handle */ 003600 Pgno pgno, /* Database page number to read data for */ 003601 u32 *piRead /* OUT: Frame number (or zero) */ 003602 ){ 003603 int rc; 003604 SEH_TRY { 003605 rc = walFindFrame(pWal, pgno, piRead); 003606 } 003607 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003608 return rc; 003609 } 003610 003611 /* 003612 ** Read the contents of frame iRead from the wal file into buffer pOut 003613 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 003614 ** error code otherwise. 003615 */ 003616 int sqlite3WalReadFrame( 003617 Wal *pWal, /* WAL handle */ 003618 u32 iRead, /* Frame to read */ 003619 int nOut, /* Size of buffer pOut in bytes */ 003620 u8 *pOut /* Buffer to write page data to */ 003621 ){ 003622 int sz; 003623 i64 iOffset; 003624 sz = pWal->hdr.szPage; 003625 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 003626 testcase( sz<=32768 ); 003627 testcase( sz>=65536 ); 003628 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 003629 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 003630 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 003631 } 003632 003633 /* 003634 ** Return the size of the database in pages (or zero, if unknown). 003635 */ 003636 Pgno sqlite3WalDbsize(Wal *pWal){ 003637 if( pWal && ALWAYS(pWal->readLock>=0) ){ 003638 return pWal->hdr.nPage; 003639 } 003640 return 0; 003641 } 003642 003643 003644 /* 003645 ** This function starts a write transaction on the WAL. 003646 ** 003647 ** A read transaction must have already been started by a prior call 003648 ** to sqlite3WalBeginReadTransaction(). 003649 ** 003650 ** If another thread or process has written into the database since 003651 ** the read transaction was started, then it is not possible for this 003652 ** thread to write as doing so would cause a fork. So this routine 003653 ** returns SQLITE_BUSY in that case and no write transaction is started. 003654 ** 003655 ** There can only be a single writer active at a time. 003656 */ 003657 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 003658 int rc; 003659 003660 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003661 /* If the write-lock is already held, then it was obtained before the 003662 ** read-transaction was even opened, making this call a no-op. 003663 ** Return early. */ 003664 if( pWal->writeLock ){ 003665 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 003666 return SQLITE_OK; 003667 } 003668 #endif 003669 003670 /* Cannot start a write transaction without first holding a read 003671 ** transaction. */ 003672 assert( pWal->readLock>=0 ); 003673 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 003674 003675 if( pWal->readOnly ){ 003676 return SQLITE_READONLY; 003677 } 003678 003679 /* Only one writer allowed at a time. Get the write lock. Return 003680 ** SQLITE_BUSY if unable. 003681 */ 003682 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 003683 if( rc ){ 003684 return rc; 003685 } 003686 pWal->writeLock = 1; 003687 003688 /* If another connection has written to the database file since the 003689 ** time the read transaction on this connection was started, then 003690 ** the write is disallowed. 003691 */ 003692 SEH_TRY { 003693 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 003694 rc = SQLITE_BUSY_SNAPSHOT; 003695 } 003696 } 003697 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003698 003699 if( rc!=SQLITE_OK ){ 003700 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003701 pWal->writeLock = 0; 003702 } 003703 return rc; 003704 } 003705 003706 /* 003707 ** End a write transaction. The commit has already been done. This 003708 ** routine merely releases the lock. 003709 */ 003710 int sqlite3WalEndWriteTransaction(Wal *pWal){ 003711 if( pWal->writeLock ){ 003712 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003713 pWal->writeLock = 0; 003714 pWal->iReCksum = 0; 003715 pWal->truncateOnCommit = 0; 003716 } 003717 return SQLITE_OK; 003718 } 003719 003720 /* 003721 ** If any data has been written (but not committed) to the log file, this 003722 ** function moves the write-pointer back to the start of the transaction. 003723 ** 003724 ** Additionally, the callback function is invoked for each frame written 003725 ** to the WAL since the start of the transaction. If the callback returns 003726 ** other than SQLITE_OK, it is not invoked again and the error code is 003727 ** returned to the caller. 003728 ** 003729 ** Otherwise, if the callback function does not return an error, this 003730 ** function returns SQLITE_OK. 003731 */ 003732 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 003733 int rc = SQLITE_OK; 003734 if( ALWAYS(pWal->writeLock) ){ 003735 Pgno iMax = pWal->hdr.mxFrame; 003736 Pgno iFrame; 003737 003738 SEH_TRY { 003739 /* Restore the clients cache of the wal-index header to the state it 003740 ** was in before the client began writing to the database. 003741 */ 003742 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 003743 003744 for(iFrame=pWal->hdr.mxFrame+1; 003745 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 003746 iFrame++ 003747 ){ 003748 /* This call cannot fail. Unless the page for which the page number 003749 ** is passed as the second argument is (a) in the cache and 003750 ** (b) has an outstanding reference, then xUndo is either a no-op 003751 ** (if (a) is false) or simply expels the page from the cache (if (b) 003752 ** is false). 003753 ** 003754 ** If the upper layer is doing a rollback, it is guaranteed that there 003755 ** are no outstanding references to any page other than page 1. And 003756 ** page 1 is never written to the log until the transaction is 003757 ** committed. As a result, the call to xUndo may not fail. 003758 */ 003759 assert( walFramePgno(pWal, iFrame)!=1 ); 003760 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 003761 } 003762 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 003763 } 003764 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003765 } 003766 return rc; 003767 } 003768 003769 /* 003770 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 003771 ** values. This function populates the array with values required to 003772 ** "rollback" the write position of the WAL handle back to the current 003773 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 003774 */ 003775 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 003776 assert( pWal->writeLock ); 003777 aWalData[0] = pWal->hdr.mxFrame; 003778 aWalData[1] = pWal->hdr.aFrameCksum[0]; 003779 aWalData[2] = pWal->hdr.aFrameCksum[1]; 003780 aWalData[3] = pWal->nCkpt; 003781 } 003782 003783 /* 003784 ** Move the write position of the WAL back to the point identified by 003785 ** the values in the aWalData[] array. aWalData must point to an array 003786 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 003787 ** by a call to WalSavepoint(). 003788 */ 003789 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 003790 int rc = SQLITE_OK; 003791 003792 assert( pWal->writeLock ); 003793 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 003794 003795 if( aWalData[3]!=pWal->nCkpt ){ 003796 /* This savepoint was opened immediately after the write-transaction 003797 ** was started. Right after that, the writer decided to wrap around 003798 ** to the start of the log. Update the savepoint values to match. 003799 */ 003800 aWalData[0] = 0; 003801 aWalData[3] = pWal->nCkpt; 003802 } 003803 003804 if( aWalData[0]<pWal->hdr.mxFrame ){ 003805 pWal->hdr.mxFrame = aWalData[0]; 003806 pWal->hdr.aFrameCksum[0] = aWalData[1]; 003807 pWal->hdr.aFrameCksum[1] = aWalData[2]; 003808 SEH_TRY { 003809 walCleanupHash(pWal); 003810 } 003811 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003812 } 003813 003814 return rc; 003815 } 003816 003817 /* 003818 ** This function is called just before writing a set of frames to the log 003819 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 003820 ** to the current log file, it is possible to overwrite the start of the 003821 ** existing log file with the new frames (i.e. "reset" the log). If so, 003822 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 003823 ** unchanged. 003824 ** 003825 ** SQLITE_OK is returned if no error is encountered (regardless of whether 003826 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 003827 ** if an error occurs. 003828 */ 003829 static int walRestartLog(Wal *pWal){ 003830 int rc = SQLITE_OK; 003831 int cnt; 003832 003833 if( pWal->readLock==0 ){ 003834 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003835 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 003836 if( pInfo->nBackfill>0 ){ 003837 u32 salt1; 003838 sqlite3_randomness(4, &salt1); 003839 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003840 if( rc==SQLITE_OK ){ 003841 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 003842 ** readers are currently using the WAL), then the transactions 003843 ** frames will overwrite the start of the existing log. Update the 003844 ** wal-index header to reflect this. 003845 ** 003846 ** In theory it would be Ok to update the cache of the header only 003847 ** at this point. But updating the actual wal-index header is also 003848 ** safe and means there is no special case for sqlite3WalUndo() 003849 ** to handle if this transaction is rolled back. */ 003850 walRestartHdr(pWal, salt1); 003851 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003852 }else if( rc!=SQLITE_BUSY ){ 003853 return rc; 003854 } 003855 } 003856 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003857 pWal->readLock = -1; 003858 cnt = 0; 003859 do{ 003860 int notUsed; 003861 rc = walTryBeginRead(pWal, ¬Used, 1, &cnt); 003862 }while( rc==WAL_RETRY ); 003863 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 003864 testcase( (rc&0xff)==SQLITE_IOERR ); 003865 testcase( rc==SQLITE_PROTOCOL ); 003866 testcase( rc==SQLITE_OK ); 003867 } 003868 return rc; 003869 } 003870 003871 /* 003872 ** Information about the current state of the WAL file and where 003873 ** the next fsync should occur - passed from sqlite3WalFrames() into 003874 ** walWriteToLog(). 003875 */ 003876 typedef struct WalWriter { 003877 Wal *pWal; /* The complete WAL information */ 003878 sqlite3_file *pFd; /* The WAL file to which we write */ 003879 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 003880 int syncFlags; /* Flags for the fsync */ 003881 int szPage; /* Size of one page */ 003882 } WalWriter; 003883 003884 /* 003885 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 003886 ** Do a sync when crossing the p->iSyncPoint boundary. 003887 ** 003888 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 003889 ** first write the part before iSyncPoint, then sync, then write the 003890 ** rest. 003891 */ 003892 static int walWriteToLog( 003893 WalWriter *p, /* WAL to write to */ 003894 void *pContent, /* Content to be written */ 003895 int iAmt, /* Number of bytes to write */ 003896 sqlite3_int64 iOffset /* Start writing at this offset */ 003897 ){ 003898 int rc; 003899 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 003900 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 003901 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 003902 if( rc ) return rc; 003903 iOffset += iFirstAmt; 003904 iAmt -= iFirstAmt; 003905 pContent = (void*)(iFirstAmt + (char*)pContent); 003906 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 003907 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 003908 if( iAmt==0 || rc ) return rc; 003909 } 003910 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 003911 return rc; 003912 } 003913 003914 /* 003915 ** Write out a single frame of the WAL 003916 */ 003917 static int walWriteOneFrame( 003918 WalWriter *p, /* Where to write the frame */ 003919 PgHdr *pPage, /* The page of the frame to be written */ 003920 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 003921 sqlite3_int64 iOffset /* Byte offset at which to write */ 003922 ){ 003923 int rc; /* Result code from subfunctions */ 003924 void *pData; /* Data actually written */ 003925 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 003926 pData = pPage->pData; 003927 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 003928 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 003929 if( rc ) return rc; 003930 /* Write the page data */ 003931 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 003932 return rc; 003933 } 003934 003935 /* 003936 ** This function is called as part of committing a transaction within which 003937 ** one or more frames have been overwritten. It updates the checksums for 003938 ** all frames written to the wal file by the current transaction starting 003939 ** with the earliest to have been overwritten. 003940 ** 003941 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 003942 */ 003943 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 003944 const int szPage = pWal->szPage;/* Database page size */ 003945 int rc = SQLITE_OK; /* Return code */ 003946 u8 *aBuf; /* Buffer to load data from wal file into */ 003947 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 003948 u32 iRead; /* Next frame to read from wal file */ 003949 i64 iCksumOff; 003950 003951 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 003952 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 003953 003954 /* Find the checksum values to use as input for the recalculating the 003955 ** first checksum. If the first frame is frame 1 (implying that the current 003956 ** transaction restarted the wal file), these values must be read from the 003957 ** wal-file header. Otherwise, read them from the frame header of the 003958 ** previous frame. */ 003959 assert( pWal->iReCksum>0 ); 003960 if( pWal->iReCksum==1 ){ 003961 iCksumOff = 24; 003962 }else{ 003963 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 003964 } 003965 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 003966 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 003967 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 003968 003969 iRead = pWal->iReCksum; 003970 pWal->iReCksum = 0; 003971 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 003972 i64 iOff = walFrameOffset(iRead, szPage); 003973 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 003974 if( rc==SQLITE_OK ){ 003975 u32 iPgno, nDbSize; 003976 iPgno = sqlite3Get4byte(aBuf); 003977 nDbSize = sqlite3Get4byte(&aBuf[4]); 003978 003979 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 003980 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 003981 } 003982 } 003983 003984 sqlite3_free(aBuf); 003985 return rc; 003986 } 003987 003988 /* 003989 ** Write a set of frames to the log. The caller must hold the write-lock 003990 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 003991 */ 003992 static int walFrames( 003993 Wal *pWal, /* Wal handle to write to */ 003994 int szPage, /* Database page-size in bytes */ 003995 PgHdr *pList, /* List of dirty pages to write */ 003996 Pgno nTruncate, /* Database size after this commit */ 003997 int isCommit, /* True if this is a commit */ 003998 int sync_flags /* Flags to pass to OsSync() (or 0) */ 003999 ){ 004000 int rc; /* Used to catch return codes */ 004001 u32 iFrame; /* Next frame address */ 004002 PgHdr *p; /* Iterator to run through pList with. */ 004003 PgHdr *pLast = 0; /* Last frame in list */ 004004 int nExtra = 0; /* Number of extra copies of last page */ 004005 int szFrame; /* The size of a single frame */ 004006 i64 iOffset; /* Next byte to write in WAL file */ 004007 WalWriter w; /* The writer */ 004008 u32 iFirst = 0; /* First frame that may be overwritten */ 004009 WalIndexHdr *pLive; /* Pointer to shared header */ 004010 004011 assert( pList ); 004012 assert( pWal->writeLock ); 004013 004014 /* If this frame set completes a transaction, then nTruncate>0. If 004015 ** nTruncate==0 then this frame set does not complete the transaction. */ 004016 assert( (isCommit!=0)==(nTruncate!=0) ); 004017 004018 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 004019 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 004020 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 004021 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 004022 } 004023 #endif 004024 004025 pLive = (WalIndexHdr*)walIndexHdr(pWal); 004026 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 004027 iFirst = pLive->mxFrame+1; 004028 } 004029 004030 /* See if it is possible to write these frames into the start of the 004031 ** log file, instead of appending to it at pWal->hdr.mxFrame. 004032 */ 004033 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 004034 return rc; 004035 } 004036 004037 /* If this is the first frame written into the log, write the WAL 004038 ** header to the start of the WAL file. See comments at the top of 004039 ** this source file for a description of the WAL header format. 004040 */ 004041 iFrame = pWal->hdr.mxFrame; 004042 if( iFrame==0 ){ 004043 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 004044 u32 aCksum[2]; /* Checksum for wal-header */ 004045 004046 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 004047 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 004048 sqlite3Put4byte(&aWalHdr[8], szPage); 004049 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 004050 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 004051 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 004052 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 004053 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 004054 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 004055 004056 pWal->szPage = szPage; 004057 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 004058 pWal->hdr.aFrameCksum[0] = aCksum[0]; 004059 pWal->hdr.aFrameCksum[1] = aCksum[1]; 004060 pWal->truncateOnCommit = 1; 004061 004062 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 004063 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 004064 if( rc!=SQLITE_OK ){ 004065 return rc; 004066 } 004067 004068 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 004069 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 004070 ** an out-of-order write following a WAL restart could result in 004071 ** database corruption. See the ticket: 004072 ** 004073 ** https://sqlite.org/src/info/ff5be73dee 004074 */ 004075 if( pWal->syncHeader ){ 004076 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 004077 if( rc ) return rc; 004078 } 004079 } 004080 if( (int)pWal->szPage!=szPage ){ 004081 return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ 004082 } 004083 004084 /* Setup information needed to write frames into the WAL */ 004085 w.pWal = pWal; 004086 w.pFd = pWal->pWalFd; 004087 w.iSyncPoint = 0; 004088 w.syncFlags = sync_flags; 004089 w.szPage = szPage; 004090 iOffset = walFrameOffset(iFrame+1, szPage); 004091 szFrame = szPage + WAL_FRAME_HDRSIZE; 004092 004093 /* Write all frames into the log file exactly once */ 004094 for(p=pList; p; p=p->pDirty){ 004095 int nDbSize; /* 0 normally. Positive == commit flag */ 004096 004097 /* Check if this page has already been written into the wal file by 004098 ** the current transaction. If so, overwrite the existing frame and 004099 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 004100 ** checksums must be recomputed when the transaction is committed. */ 004101 if( iFirst && (p->pDirty || isCommit==0) ){ 004102 u32 iWrite = 0; 004103 VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); 004104 assert( rc==SQLITE_OK || iWrite==0 ); 004105 if( iWrite>=iFirst ){ 004106 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 004107 void *pData; 004108 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 004109 pWal->iReCksum = iWrite; 004110 } 004111 pData = p->pData; 004112 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 004113 if( rc ) return rc; 004114 p->flags &= ~PGHDR_WAL_APPEND; 004115 continue; 004116 } 004117 } 004118 004119 iFrame++; 004120 assert( iOffset==walFrameOffset(iFrame, szPage) ); 004121 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 004122 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 004123 if( rc ) return rc; 004124 pLast = p; 004125 iOffset += szFrame; 004126 p->flags |= PGHDR_WAL_APPEND; 004127 } 004128 004129 /* Recalculate checksums within the wal file if required. */ 004130 if( isCommit && pWal->iReCksum ){ 004131 rc = walRewriteChecksums(pWal, iFrame); 004132 if( rc ) return rc; 004133 } 004134 004135 /* If this is the end of a transaction, then we might need to pad 004136 ** the transaction and/or sync the WAL file. 004137 ** 004138 ** Padding and syncing only occur if this set of frames complete a 004139 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 004140 ** or synchronous==OFF, then no padding or syncing are needed. 004141 ** 004142 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 004143 ** needed and only the sync is done. If padding is needed, then the 004144 ** final frame is repeated (with its commit mark) until the next sector 004145 ** boundary is crossed. Only the part of the WAL prior to the last 004146 ** sector boundary is synced; the part of the last frame that extends 004147 ** past the sector boundary is written after the sync. 004148 */ 004149 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 004150 int bSync = 1; 004151 if( pWal->padToSectorBoundary ){ 004152 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 004153 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 004154 bSync = (w.iSyncPoint==iOffset); 004155 testcase( bSync ); 004156 while( iOffset<w.iSyncPoint ){ 004157 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 004158 if( rc ) return rc; 004159 iOffset += szFrame; 004160 nExtra++; 004161 assert( pLast!=0 ); 004162 } 004163 } 004164 if( bSync ){ 004165 assert( rc==SQLITE_OK ); 004166 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 004167 } 004168 } 004169 004170 /* If this frame set completes the first transaction in the WAL and 004171 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 004172 ** journal size limit, if possible. 004173 */ 004174 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 004175 i64 sz = pWal->mxWalSize; 004176 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 004177 sz = walFrameOffset(iFrame+nExtra+1, szPage); 004178 } 004179 walLimitSize(pWal, sz); 004180 pWal->truncateOnCommit = 0; 004181 } 004182 004183 /* Append data to the wal-index. It is not necessary to lock the 004184 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 004185 ** guarantees that there are no other writers, and no data that may 004186 ** be in use by existing readers is being overwritten. 004187 */ 004188 iFrame = pWal->hdr.mxFrame; 004189 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 004190 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 004191 iFrame++; 004192 rc = walIndexAppend(pWal, iFrame, p->pgno); 004193 } 004194 assert( pLast!=0 || nExtra==0 ); 004195 while( rc==SQLITE_OK && nExtra>0 ){ 004196 iFrame++; 004197 nExtra--; 004198 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 004199 } 004200 004201 if( rc==SQLITE_OK ){ 004202 /* Update the private copy of the header. */ 004203 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 004204 testcase( szPage<=32768 ); 004205 testcase( szPage>=65536 ); 004206 pWal->hdr.mxFrame = iFrame; 004207 if( isCommit ){ 004208 pWal->hdr.iChange++; 004209 pWal->hdr.nPage = nTruncate; 004210 } 004211 /* If this is a commit, update the wal-index header too. */ 004212 if( isCommit ){ 004213 walIndexWriteHdr(pWal); 004214 pWal->iCallback = iFrame; 004215 } 004216 } 004217 004218 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 004219 return rc; 004220 } 004221 004222 /* 004223 ** Write a set of frames to the log. The caller must hold the write-lock 004224 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 004225 ** 004226 ** The difference between this function and walFrames() is that this 004227 ** function wraps walFrames() in an SEH_TRY{...} block. 004228 */ 004229 int sqlite3WalFrames( 004230 Wal *pWal, /* Wal handle to write to */ 004231 int szPage, /* Database page-size in bytes */ 004232 PgHdr *pList, /* List of dirty pages to write */ 004233 Pgno nTruncate, /* Database size after this commit */ 004234 int isCommit, /* True if this is a commit */ 004235 int sync_flags /* Flags to pass to OsSync() (or 0) */ 004236 ){ 004237 int rc; 004238 SEH_TRY { 004239 rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); 004240 } 004241 SEH_EXCEPT( rc = walHandleException(pWal); ) 004242 return rc; 004243 } 004244 004245 /* 004246 ** This routine is called to implement sqlite3_wal_checkpoint() and 004247 ** related interfaces. 004248 ** 004249 ** Obtain a CHECKPOINT lock and then backfill as much information as 004250 ** we can from WAL into the database. 004251 ** 004252 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 004253 ** callback. In this case this function runs a blocking checkpoint. 004254 */ 004255 int sqlite3WalCheckpoint( 004256 Wal *pWal, /* Wal connection */ 004257 sqlite3 *db, /* Check this handle's interrupt flag */ 004258 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 004259 int (*xBusy)(void*), /* Function to call when busy */ 004260 void *pBusyArg, /* Context argument for xBusyHandler */ 004261 int sync_flags, /* Flags to sync db file with (or 0) */ 004262 int nBuf, /* Size of temporary buffer */ 004263 u8 *zBuf, /* Temporary buffer to use */ 004264 int *pnLog, /* OUT: Number of frames in WAL */ 004265 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 004266 ){ 004267 int rc; /* Return code */ 004268 int isChanged = 0; /* True if a new wal-index header is loaded */ 004269 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 004270 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 004271 004272 assert( pWal->ckptLock==0 ); 004273 assert( pWal->writeLock==0 ); 004274 004275 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 004276 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 004277 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 004278 004279 if( pWal->readOnly ) return SQLITE_READONLY; 004280 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 004281 004282 /* Enable blocking locks, if possible. */ 004283 sqlite3WalDb(pWal, db); 004284 if( xBusy2 ) (void)walEnableBlocking(pWal); 004285 004286 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 004287 ** "checkpoint" lock on the database file. 004288 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 004289 ** checkpoint operation at the same time, the lock cannot be obtained and 004290 ** SQLITE_BUSY is returned. 004291 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 004292 ** it will not be invoked in this case. 004293 */ 004294 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 004295 testcase( rc==SQLITE_BUSY ); 004296 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 004297 if( rc==SQLITE_OK ){ 004298 pWal->ckptLock = 1; 004299 004300 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 004301 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 004302 ** file. 004303 ** 004304 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 004305 ** immediately, and a busy-handler is configured, it is invoked and the 004306 ** writer lock retried until either the busy-handler returns 0 or the 004307 ** lock is successfully obtained. 004308 */ 004309 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 004310 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 004311 if( rc==SQLITE_OK ){ 004312 pWal->writeLock = 1; 004313 }else if( rc==SQLITE_BUSY ){ 004314 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 004315 xBusy2 = 0; 004316 rc = SQLITE_OK; 004317 } 004318 } 004319 } 004320 004321 004322 /* Read the wal-index header. */ 004323 SEH_TRY { 004324 if( rc==SQLITE_OK ){ 004325 /* For a passive checkpoint, do not re-enable blocking locks after 004326 ** reading the wal-index header. A passive checkpoint should not block 004327 ** or invoke the busy handler. The only lock such a checkpoint may 004328 ** attempt to obtain is a lock on a read-slot, and it should give up 004329 ** immediately and do a partial checkpoint if it cannot obtain it. */ 004330 walDisableBlocking(pWal); 004331 rc = walIndexReadHdr(pWal, &isChanged); 004332 if( eMode2!=SQLITE_CHECKPOINT_PASSIVE ) (void)walEnableBlocking(pWal); 004333 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 004334 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 004335 } 004336 } 004337 004338 /* Copy data from the log to the database file. */ 004339 if( rc==SQLITE_OK ){ 004340 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 004341 rc = SQLITE_CORRUPT_BKPT; 004342 }else{ 004343 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); 004344 } 004345 004346 /* If no error occurred, set the output variables. */ 004347 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 004348 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 004349 SEH_INJECT_FAULT; 004350 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 004351 } 004352 } 004353 } 004354 SEH_EXCEPT( rc = walHandleException(pWal); ) 004355 004356 if( isChanged ){ 004357 /* If a new wal-index header was loaded before the checkpoint was 004358 ** performed, then the pager-cache associated with pWal is now 004359 ** out of date. So zero the cached wal-index header to ensure that 004360 ** next time the pager opens a snapshot on this database it knows that 004361 ** the cache needs to be reset. 004362 */ 004363 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 004364 } 004365 004366 walDisableBlocking(pWal); 004367 sqlite3WalDb(pWal, 0); 004368 004369 /* Release the locks. */ 004370 sqlite3WalEndWriteTransaction(pWal); 004371 if( pWal->ckptLock ){ 004372 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 004373 pWal->ckptLock = 0; 004374 } 004375 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 004376 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 004377 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 004378 #endif 004379 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 004380 } 004381 004382 /* Return the value to pass to a sqlite3_wal_hook callback, the 004383 ** number of frames in the WAL at the point of the last commit since 004384 ** sqlite3WalCallback() was called. If no commits have occurred since 004385 ** the last call, then return 0. 004386 */ 004387 int sqlite3WalCallback(Wal *pWal){ 004388 u32 ret = 0; 004389 if( pWal ){ 004390 ret = pWal->iCallback; 004391 pWal->iCallback = 0; 004392 } 004393 return (int)ret; 004394 } 004395 004396 /* 004397 ** This function is called to change the WAL subsystem into or out 004398 ** of locking_mode=EXCLUSIVE. 004399 ** 004400 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 004401 ** into locking_mode=NORMAL. This means that we must acquire a lock 004402 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 004403 ** or if the acquisition of the lock fails, then return 0. If the 004404 ** transition out of exclusive-mode is successful, return 1. This 004405 ** operation must occur while the pager is still holding the exclusive 004406 ** lock on the main database file. 004407 ** 004408 ** If op is one, then change from locking_mode=NORMAL into 004409 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 004410 ** be released. Return 1 if the transition is made and 0 if the 004411 ** WAL is already in exclusive-locking mode - meaning that this 004412 ** routine is a no-op. The pager must already hold the exclusive lock 004413 ** on the main database file before invoking this operation. 004414 ** 004415 ** If op is negative, then do a dry-run of the op==1 case but do 004416 ** not actually change anything. The pager uses this to see if it 004417 ** should acquire the database exclusive lock prior to invoking 004418 ** the op==1 case. 004419 */ 004420 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 004421 int rc; 004422 assert( pWal->writeLock==0 ); 004423 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 004424 004425 /* pWal->readLock is usually set, but might be -1 if there was a 004426 ** prior error while attempting to acquire are read-lock. This cannot 004427 ** happen if the connection is actually in exclusive mode (as no xShmLock 004428 ** locks are taken in this case). Nor should the pager attempt to 004429 ** upgrade to exclusive-mode following such an error. 004430 */ 004431 #ifndef SQLITE_USE_SEH 004432 assert( pWal->readLock>=0 || pWal->lockError ); 004433 #endif 004434 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 004435 004436 if( op==0 ){ 004437 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 004438 pWal->exclusiveMode = WAL_NORMAL_MODE; 004439 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 004440 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004441 } 004442 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004443 }else{ 004444 /* Already in locking_mode=NORMAL */ 004445 rc = 0; 004446 } 004447 }else if( op>0 ){ 004448 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 004449 assert( pWal->readLock>=0 ); 004450 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 004451 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004452 rc = 1; 004453 }else{ 004454 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004455 } 004456 return rc; 004457 } 004458 004459 /* 004460 ** Return true if the argument is non-NULL and the WAL module is using 004461 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 004462 ** WAL module is using shared-memory, return false. 004463 */ 004464 int sqlite3WalHeapMemory(Wal *pWal){ 004465 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 004466 } 004467 004468 #ifdef SQLITE_ENABLE_SNAPSHOT 004469 /* Create a snapshot object. The content of a snapshot is opaque to 004470 ** every other subsystem, so the WAL module can put whatever it needs 004471 ** in the object. 004472 */ 004473 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 004474 int rc = SQLITE_OK; 004475 WalIndexHdr *pRet; 004476 static const u32 aZero[4] = { 0, 0, 0, 0 }; 004477 004478 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 004479 004480 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 004481 *ppSnapshot = 0; 004482 return SQLITE_ERROR; 004483 } 004484 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 004485 if( pRet==0 ){ 004486 rc = SQLITE_NOMEM_BKPT; 004487 }else{ 004488 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 004489 *ppSnapshot = (sqlite3_snapshot*)pRet; 004490 } 004491 004492 return rc; 004493 } 004494 004495 /* Try to open on pSnapshot when the next read-transaction starts 004496 */ 004497 void sqlite3WalSnapshotOpen( 004498 Wal *pWal, 004499 sqlite3_snapshot *pSnapshot 004500 ){ 004501 if( pSnapshot && ((WalIndexHdr*)pSnapshot)->iVersion==0 ){ 004502 /* iVersion==0 means that this is a call to sqlite3_snapshot_get(). In 004503 ** this case set the bGetSnapshot flag so that if the call to 004504 ** sqlite3_snapshot_get() is about to read transaction on this wal 004505 ** file, it does not take read-lock 0 if the wal file has been completely 004506 ** checkpointed. Taking read-lock 0 would work, but then it would be 004507 ** possible for a subsequent writer to destroy the snapshot even while 004508 ** this connection is holding its read-transaction open. This is contrary 004509 ** to user expectations, so we avoid it by not taking read-lock 0. */ 004510 pWal->bGetSnapshot = 1; 004511 }else{ 004512 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 004513 pWal->bGetSnapshot = 0; 004514 } 004515 } 004516 004517 /* 004518 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 004519 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 004520 */ 004521 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 004522 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 004523 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 004524 004525 /* aSalt[0] is a copy of the value stored in the wal file header. It 004526 ** is incremented each time the wal file is restarted. */ 004527 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 004528 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 004529 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 004530 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 004531 return 0; 004532 } 004533 004534 /* 004535 ** The caller currently has a read transaction open on the database. 004536 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 004537 ** checks if the snapshot passed as the second argument is still 004538 ** available. If so, SQLITE_OK is returned. 004539 ** 004540 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 004541 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 004542 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 004543 ** lock is released before returning. 004544 */ 004545 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 004546 int rc; 004547 SEH_TRY { 004548 rc = walLockShared(pWal, WAL_CKPT_LOCK); 004549 if( rc==SQLITE_OK ){ 004550 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 004551 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 004552 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 004553 ){ 004554 rc = SQLITE_ERROR_SNAPSHOT; 004555 walUnlockShared(pWal, WAL_CKPT_LOCK); 004556 } 004557 } 004558 } 004559 SEH_EXCEPT( rc = walHandleException(pWal); ) 004560 return rc; 004561 } 004562 004563 /* 004564 ** Release a lock obtained by an earlier successful call to 004565 ** sqlite3WalSnapshotCheck(). 004566 */ 004567 void sqlite3WalSnapshotUnlock(Wal *pWal){ 004568 assert( pWal ); 004569 walUnlockShared(pWal, WAL_CKPT_LOCK); 004570 } 004571 004572 004573 #endif /* SQLITE_ENABLE_SNAPSHOT */ 004574 004575 #ifdef SQLITE_ENABLE_ZIPVFS 004576 /* 004577 ** If the argument is not NULL, it points to a Wal object that holds a 004578 ** read-lock. This function returns the database page-size if it is known, 004579 ** or zero if it is not (or if pWal is NULL). 004580 */ 004581 int sqlite3WalFramesize(Wal *pWal){ 004582 assert( pWal==0 || pWal->readLock>=0 ); 004583 return (pWal ? pWal->szPage : 0); 004584 } 004585 #endif 004586 004587 /* Return the sqlite3_file object for the WAL file 004588 */ 004589 sqlite3_file *sqlite3WalFile(Wal *pWal){ 004590 return pWal->pWalFd; 004591 } 004592 004593 #endif /* #ifndef SQLITE_OMIT_WAL */